Discretization of Boltzmann equation with finite volume method and explicit-implicit schemes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 942-960.

Voir la notice de l'article provenant de la source Math-Net.Ru

The features of discretization of the Boltzmann equation using the finite volume method are considered. Finite-difference schemes for calculation of fluxes and finite-difference schemes for discretization in time are discussed. A TVD-type scheme is used for flux discretization, and an explicit-implicit scheme is applied to time discretization. The results of numerical simulation of rarefied gas flow in a shock tube for various Knudsen numbers are presented. For small Knudsen numbers, the solution of the Boltzmann equation is compared with the solution obtained from the Euler equation.
Keywords: finite volume method, Boltzmann equation, rarefied gas, shock tube.
@article{SEMR_2023_20_2_a55,
     author = {K. N. Volkov and V. N. Emelyanov and A. V. Pustovalov},
     title = {Discretization of {Boltzmann} equation with finite volume method and explicit-implicit schemes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {942--960},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a55/}
}
TY  - JOUR
AU  - K. N. Volkov
AU  - V. N. Emelyanov
AU  - A. V. Pustovalov
TI  - Discretization of Boltzmann equation with finite volume method and explicit-implicit schemes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 942
EP  - 960
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a55/
LA  - ru
ID  - SEMR_2023_20_2_a55
ER  - 
%0 Journal Article
%A K. N. Volkov
%A V. N. Emelyanov
%A A. V. Pustovalov
%T Discretization of Boltzmann equation with finite volume method and explicit-implicit schemes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 942-960
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a55/
%G ru
%F SEMR_2023_20_2_a55
K. N. Volkov; V. N. Emelyanov; A. V. Pustovalov. Discretization of Boltzmann equation with finite volume method and explicit-implicit schemes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 942-960. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a55/

[1] P.L. Bhatnagar, E.P. Gross, M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., 94:3 (1954), 511–525 | DOI | Zbl

[2] A.V. Bobylev, A. Palczewski, J. Schneider, “On approximation of the Boltzmann equation by discrete velocity models”, C. R. Acad. Sci., Paris, Sér. I, 320:5 (1995), 639–644 | MR | Zbl

[3] C. Mouhot, L. Pareschi, T. Rey, “Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation”, ESAIM, Math. Model. Numer. Anal., 47:5 (2013), 1515–1531 | DOI | MR | Zbl

[4] J. Hu, K. Qi, “A fast Fourier spectral method for the homogeneous Boltzmann equation with non-cutoff collision kernels”, J. Comput. Phys., 423 (2020), 109806 | DOI | MR | Zbl

[5] L. Wu, C. White, T.J. Scanlon, J.M. Reese, Y. Zhang, “Deterministic numerical solutions of the Boltzmann equation using the fast spectral method”, J. Comput. Phys., 250 (2013), 27–52 | DOI | MR | Zbl

[6] A.M.P. Boelens, D. Venturi, D.M. Tartakovsky, “Tensor methods for the Boltzmann-BGK equation”, J. Comput. Phys., 421 (2020), 109744 | DOI | MR | Zbl

[7] L. Pareschi,, B. Perthame, “A Fourier spectral method for homogeneous Boltzmann equation”, Transp. Theory Stat. Phys., 25:3-5 (1996), 369–382 | DOI | MR | Zbl

[8] A. Alekseenko, J. Limbacher, “Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $O(N^2)$ operations using the discrete Fourier transform”, Kinet. Relat. Models, 12:4 (2019), 703–726 | DOI | MR | Zbl

[9] A.V. Bobylev, S. Rjasanow, “Difference scheme for the Boltzmann equation based on fast Fourier transform”, Eur. J. Mech., B, 16:2 (1997), 293–306 | MR | Zbl

[10] C. Watchararuangwita, Y.N. Grigoriev, S.V. Meleshko, “A deterministic spectral method for solving the Boltzmann equation for one-dimensional flows”, ScienceAsia, 35:1 (2009), 70–79 | DOI

[11] A.V. Bobylev, S. Rjasanow, “Fast deterministic method of solving the Boltzmann equation for hard spheres”, Eur. J. Mech., B, Fluids, 18:5 (1999), 869–887 | DOI | MR | Zbl

[12] I. Ibragimov, S. Rjasanow, “Numerical solution of the Boltzmann equation on the uniform grid”, Computing, 69:2 (2002), 163–186 | DOI | MR | Zbl

[13] I. Holloway, A. Wood, A. Alekseenko, “Acceleration of Boltzmann collision integral calculation using machine learning”, Mathematics, 9:12 (2021), 1384 | DOI

[14] G. Dimarco, L. Pareschi, “Asymptotic preserving implicit-explicit Runge-Kutta methods for nonlinear kinetic equations”, SIAM J. Numer. Anal., 51:2 (2013), 1064–1087 | DOI | MR | Zbl

[15] G. Dimarco, R. Loubère, J. Narski, T. Rey, “An efficient numerical method for solving the Boltzmann equation in multidimensions”, J. Comput. Phys., 353 (2018), 46–81 | DOI | MR | Zbl

[16] F. Coron, B. Perthame, “Numerical passage from kinetic to fluid equations”, SIAM J. Numer. Anal., 28:1 (1991), 26–42 | DOI | MR | Zbl

[17] S. Pieraccini, G. Puppo, “Implicit-explicit schemes for BGK kinetic equations”, J. Sci. Comput., 32:1 (2007), 1–28 | DOI | MR | Zbl

[18] B. Perthame, “Global existence to the BGK model of Boltzmann equation”, J. Differ. Equations, 82:1 (1989), 191–205 | DOI | MR | Zbl

[19] S. Mischler, “Uniqueness for the BGK-equation in $R^N$ and rate of convergence for a semi-discrete scheme”, Differ. Integral Equ., 9:5 (1996), 1119–1138 | MR | Zbl

[20] J. Nassios, J.E. Sader, “High frequency oscillatory flows in a slightly rarefied gas according to the Boltzmann-BGK equation”, J. Fluid Mech., 729 (2013), 1–46 | DOI | MR | Zbl

[21] E.M. Shakhov, “Generalization of the Krook kinetic equation”, Fluid Dyn., 3 (1968), 95–96 | DOI | MR

[22] L.H. Holway, “New statistical models for kinetic theory: methods of construction”, Phys. Fluids, 9:9 (1966), 1658–1673 | DOI

[23] L. Mieussens, H. Struchtrup, “Numerical comparison of Bhatnagar–Gross–Krook models with proper Prandtl number”, Phys. Fluids, 16:8 (2004), 2797 | DOI | MR | Zbl

[24] L. Mieussens, “Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries”, J. Comput. Phys., 162:2 (2000), 429–466 | DOI | MR | Zbl

[25] L. Mieussens, “Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics”, Math. Models Methods Appl. Sci., 10:8 (2000), 1121–1149 | DOI | MR | Zbl

[26] C.K. Garrett, C.D. Hauck, “A fast solver for implicit integration of the Vlasov-Poisson system in the Eulerian framework”, SIAM J. Sci. Comput., 40:2 (2018), B483–B506 | DOI | MR | Zbl

[27] S. Gottlieb, C.-W. Shu, E. Tadmor, “Strong stability-preserving high-order time discretization methods”, SIAM Rev., 43:1 (2011), 89–112 | DOI | MR | Zbl

[28] V. Michel-Dansac, A. Thomann, “TVD-MOOD schemes based on implicit-explicit time integration”, Appl. Math. Comput., 433 (2022), 127397 | MR | Zbl

[29] Z.L. Guo, R.J. Wang, K. Xu, “Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case”, Phys. Rev. E, 91:3 (2015), 033313 | DOI | MR

[30] L. Zhu, S. Chen, Z. Guo, “dugksFoam: an open source OpenFOAM solver for the Boltzmann model equation”, Comput. Phys. Commun., 213 (2017), 155–164 | DOI | Zbl

[31] Z. Guo, K. Xu, “Progress of discrete unified gas-kinetic scheme for multiscale flows”, Adv. Aerodyn., 3 (2021), 6 | DOI | MR