Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a55, author = {K. N. Volkov and V. N. Emelyanov and A. V. Pustovalov}, title = {Discretization of {Boltzmann} equation with finite volume method and explicit-implicit schemes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {942--960}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a55/} }
TY - JOUR AU - K. N. Volkov AU - V. N. Emelyanov AU - A. V. Pustovalov TI - Discretization of Boltzmann equation with finite volume method and explicit-implicit schemes JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 942 EP - 960 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a55/ LA - ru ID - SEMR_2023_20_2_a55 ER -
%0 Journal Article %A K. N. Volkov %A V. N. Emelyanov %A A. V. Pustovalov %T Discretization of Boltzmann equation with finite volume method and explicit-implicit schemes %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 942-960 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a55/ %G ru %F SEMR_2023_20_2_a55
K. N. Volkov; V. N. Emelyanov; A. V. Pustovalov. Discretization of Boltzmann equation with finite volume method and explicit-implicit schemes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 942-960. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a55/
[1] P.L. Bhatnagar, E.P. Gross, M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., 94:3 (1954), 511–525 | DOI | Zbl
[2] A.V. Bobylev, A. Palczewski, J. Schneider, “On approximation of the Boltzmann equation by discrete velocity models”, C. R. Acad. Sci., Paris, Sér. I, 320:5 (1995), 639–644 | MR | Zbl
[3] C. Mouhot, L. Pareschi, T. Rey, “Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation”, ESAIM, Math. Model. Numer. Anal., 47:5 (2013), 1515–1531 | DOI | MR | Zbl
[4] J. Hu, K. Qi, “A fast Fourier spectral method for the homogeneous Boltzmann equation with non-cutoff collision kernels”, J. Comput. Phys., 423 (2020), 109806 | DOI | MR | Zbl
[5] L. Wu, C. White, T.J. Scanlon, J.M. Reese, Y. Zhang, “Deterministic numerical solutions of the Boltzmann equation using the fast spectral method”, J. Comput. Phys., 250 (2013), 27–52 | DOI | MR | Zbl
[6] A.M.P. Boelens, D. Venturi, D.M. Tartakovsky, “Tensor methods for the Boltzmann-BGK equation”, J. Comput. Phys., 421 (2020), 109744 | DOI | MR | Zbl
[7] L. Pareschi,, B. Perthame, “A Fourier spectral method for homogeneous Boltzmann equation”, Transp. Theory Stat. Phys., 25:3-5 (1996), 369–382 | DOI | MR | Zbl
[8] A. Alekseenko, J. Limbacher, “Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $O(N^2)$ operations using the discrete Fourier transform”, Kinet. Relat. Models, 12:4 (2019), 703–726 | DOI | MR | Zbl
[9] A.V. Bobylev, S. Rjasanow, “Difference scheme for the Boltzmann equation based on fast Fourier transform”, Eur. J. Mech., B, 16:2 (1997), 293–306 | MR | Zbl
[10] C. Watchararuangwita, Y.N. Grigoriev, S.V. Meleshko, “A deterministic spectral method for solving the Boltzmann equation for one-dimensional flows”, ScienceAsia, 35:1 (2009), 70–79 | DOI
[11] A.V. Bobylev, S. Rjasanow, “Fast deterministic method of solving the Boltzmann equation for hard spheres”, Eur. J. Mech., B, Fluids, 18:5 (1999), 869–887 | DOI | MR | Zbl
[12] I. Ibragimov, S. Rjasanow, “Numerical solution of the Boltzmann equation on the uniform grid”, Computing, 69:2 (2002), 163–186 | DOI | MR | Zbl
[13] I. Holloway, A. Wood, A. Alekseenko, “Acceleration of Boltzmann collision integral calculation using machine learning”, Mathematics, 9:12 (2021), 1384 | DOI
[14] G. Dimarco, L. Pareschi, “Asymptotic preserving implicit-explicit Runge-Kutta methods for nonlinear kinetic equations”, SIAM J. Numer. Anal., 51:2 (2013), 1064–1087 | DOI | MR | Zbl
[15] G. Dimarco, R. Loubère, J. Narski, T. Rey, “An efficient numerical method for solving the Boltzmann equation in multidimensions”, J. Comput. Phys., 353 (2018), 46–81 | DOI | MR | Zbl
[16] F. Coron, B. Perthame, “Numerical passage from kinetic to fluid equations”, SIAM J. Numer. Anal., 28:1 (1991), 26–42 | DOI | MR | Zbl
[17] S. Pieraccini, G. Puppo, “Implicit-explicit schemes for BGK kinetic equations”, J. Sci. Comput., 32:1 (2007), 1–28 | DOI | MR | Zbl
[18] B. Perthame, “Global existence to the BGK model of Boltzmann equation”, J. Differ. Equations, 82:1 (1989), 191–205 | DOI | MR | Zbl
[19] S. Mischler, “Uniqueness for the BGK-equation in $R^N$ and rate of convergence for a semi-discrete scheme”, Differ. Integral Equ., 9:5 (1996), 1119–1138 | MR | Zbl
[20] J. Nassios, J.E. Sader, “High frequency oscillatory flows in a slightly rarefied gas according to the Boltzmann-BGK equation”, J. Fluid Mech., 729 (2013), 1–46 | DOI | MR | Zbl
[21] E.M. Shakhov, “Generalization of the Krook kinetic equation”, Fluid Dyn., 3 (1968), 95–96 | DOI | MR
[22] L.H. Holway, “New statistical models for kinetic theory: methods of construction”, Phys. Fluids, 9:9 (1966), 1658–1673 | DOI
[23] L. Mieussens, H. Struchtrup, “Numerical comparison of Bhatnagar–Gross–Krook models with proper Prandtl number”, Phys. Fluids, 16:8 (2004), 2797 | DOI | MR | Zbl
[24] L. Mieussens, “Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries”, J. Comput. Phys., 162:2 (2000), 429–466 | DOI | MR | Zbl
[25] L. Mieussens, “Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics”, Math. Models Methods Appl. Sci., 10:8 (2000), 1121–1149 | DOI | MR | Zbl
[26] C.K. Garrett, C.D. Hauck, “A fast solver for implicit integration of the Vlasov-Poisson system in the Eulerian framework”, SIAM J. Sci. Comput., 40:2 (2018), B483–B506 | DOI | MR | Zbl
[27] S. Gottlieb, C.-W. Shu, E. Tadmor, “Strong stability-preserving high-order time discretization methods”, SIAM Rev., 43:1 (2011), 89–112 | DOI | MR | Zbl
[28] V. Michel-Dansac, A. Thomann, “TVD-MOOD schemes based on implicit-explicit time integration”, Appl. Math. Comput., 433 (2022), 127397 | MR | Zbl
[29] Z.L. Guo, R.J. Wang, K. Xu, “Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case”, Phys. Rev. E, 91:3 (2015), 033313 | DOI | MR
[30] L. Zhu, S. Chen, Z. Guo, “dugksFoam: an open source OpenFOAM solver for the Boltzmann model equation”, Comput. Phys. Commun., 213 (2017), 155–164 | DOI | Zbl
[31] Z. Guo, K. Xu, “Progress of discrete unified gas-kinetic scheme for multiscale flows”, Adv. Aerodyn., 3 (2021), 6 | DOI | MR