Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a52, author = {V. N. Starovoitov}, title = {Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1597--1604}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a52/} }
TY - JOUR AU - V. N. Starovoitov TI - Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1597 EP - 1604 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a52/ LA - ru ID - SEMR_2023_20_2_a52 ER -
%0 Journal Article %A V. N. Starovoitov %T Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 1597-1604 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a52/ %G ru %F SEMR_2023_20_2_a52
V. N. Starovoitov. Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1597-1604. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a52/
[1] V.N. Starovoitov, B.N. Starovoitova, “Modeling the dynamics of polymer chains in water solution. Application to sensor design”, J. Phys.: Conf. Ser., 894 (2017), 012088 | DOI
[2] V.N. Starovoitov, “Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1714–1719 | DOI | MR | Zbl
[3] V.N. Starovoitov, “Initial boundary value problem for a nonlocal in time parabolic equation”, Sib. Èlektron. Mat. Izv., 15 (2018), 1311–1319 | DOI | MR | Zbl
[4] V.N. Starovoitov, “Boundary value problem for a global-in-time parabolic equation”, Math. Methods Appl. Sci., 44:1 (2021), 1118–1126 | DOI | MR | Zbl
[5] V.N. Starovoitov, “Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral”, J. Elliptic Parabol. Equ., 7:2 (2021), 623–634 | DOI | MR | Zbl
[6] C. Walker, “Strong solutions to a nonlocal-in-time semilinear heat equation”, Q. Appl. Math., 79:2 (2021), 265–272 | DOI | MR | Zbl
[7] J.-D. Djida, G.F. Foghem Gounoue, Y.K. Tchaptchié, “Nonlocal complement value problem for a global in time parabolic equation”, J. Elliptic Parabol. Equ., 8:2 (2022), 767–789 | DOI | MR | Zbl
[8] C. Walker, “A remark on a nonlocal-in-time heat equation”, C. R., Math., Acad. Sci. Paris, 361 (2023), 825–831 | DOI | MR | Zbl
[9] L.C. Evans, Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, 2010 | DOI | MR | Zbl
[10] B. Makarov, A. Podkorytov, Real analysis: measures, integrals and applications, Springer, London, 2013 | DOI | MR | Zbl