Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1597-1604.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with a parabolic partial differential equation that describes the chaotic dynamics of a polymer chain in water solution. This equation includes a non-linear nonlocal in time term and the integral of the solution over the space domain that stands in a denominator. For this reason, a regularized problem is considered. The regularization prevents vanishing this integral. The weak solvability of the initial boundary value problem for this equation is proven.
Keywords: polymer chain, chaotic dynamics, initial boundary value problem, solvability.
Mots-clés : nonlocal parabolic equation
@article{SEMR_2023_20_2_a52,
     author = {V. N. Starovoitov},
     title = {Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1597--1604},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a52/}
}
TY  - JOUR
AU  - V. N. Starovoitov
TI  - Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1597
EP  - 1604
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a52/
LA  - ru
ID  - SEMR_2023_20_2_a52
ER  - 
%0 Journal Article
%A V. N. Starovoitov
%T Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1597-1604
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a52/
%G ru
%F SEMR_2023_20_2_a52
V. N. Starovoitov. Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1597-1604. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a52/

[1] V.N. Starovoitov, B.N. Starovoitova, “Modeling the dynamics of polymer chains in water solution. Application to sensor design”, J. Phys.: Conf. Ser., 894 (2017), 012088 | DOI

[2] V.N. Starovoitov, “Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1714–1719 | DOI | MR | Zbl

[3] V.N. Starovoitov, “Initial boundary value problem for a nonlocal in time parabolic equation”, Sib. Èlektron. Mat. Izv., 15 (2018), 1311–1319 | DOI | MR | Zbl

[4] V.N. Starovoitov, “Boundary value problem for a global-in-time parabolic equation”, Math. Methods Appl. Sci., 44:1 (2021), 1118–1126 | DOI | MR | Zbl

[5] V.N. Starovoitov, “Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral”, J. Elliptic Parabol. Equ., 7:2 (2021), 623–634 | DOI | MR | Zbl

[6] C. Walker, “Strong solutions to a nonlocal-in-time semilinear heat equation”, Q. Appl. Math., 79:2 (2021), 265–272 | DOI | MR | Zbl

[7] J.-D. Djida, G.F. Foghem Gounoue, Y.K. Tchaptchié, “Nonlocal complement value problem for a global in time parabolic equation”, J. Elliptic Parabol. Equ., 8:2 (2022), 767–789 | DOI | MR | Zbl

[8] C. Walker, “A remark on a nonlocal-in-time heat equation”, C. R., Math., Acad. Sci. Paris, 361 (2023), 825–831 | DOI | MR | Zbl

[9] L.C. Evans, Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, 2010 | DOI | MR | Zbl

[10] B. Makarov, A. Podkorytov, Real analysis: measures, integrals and applications, Springer, London, 2013 | DOI | MR | Zbl