The problem on small motions of a mixture of viscous compressible fluids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1552-1589

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the problem on small motions and normal oscillations of a homogeneous mixture of several viscous compressible fluids filling a bounded domain of three-dimensional space with an infinitely smooth boundary. The boundary condition of slippage without shear stresses is considered. It is proved that the essential spectrum of the problem is a finite set of segments located on the real axis. The discrete spectrum lies on the real axis, with the possible exception of a finite number of complex conjugate eigenvalues. The spectrum of the problem contains a subsequence of eigenvalues with a limit point at infinity and a power-law asymptotic distribution. The asymptotic behavior of solutions to the evolution problem is studied.
Keywords: mixture of fluids, spectral problem, essential spectrum, discrete spectrum, solution asymptotics.
Mots-clés : compressible viscous fluid
@article{SEMR_2023_20_2_a51,
     author = {D. A. Zakora},
     title = {The problem on small motions of a mixture of viscous compressible fluids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1552--1589},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a51/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - The problem on small motions of a mixture of viscous compressible fluids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1552
EP  - 1589
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a51/
LA  - ru
ID  - SEMR_2023_20_2_a51
ER  - 
%0 Journal Article
%A D. A. Zakora
%T The problem on small motions of a mixture of viscous compressible fluids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1552-1589
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a51/
%G ru
%F SEMR_2023_20_2_a51
D. A. Zakora. The problem on small motions of a mixture of viscous compressible fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1552-1589. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a51/