The problem on small motions of a mixture of viscous compressible fluids
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1552-1589.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the problem on small motions and normal oscillations of a homogeneous mixture of several viscous compressible fluids filling a bounded domain of three-dimensional space with an infinitely smooth boundary. The boundary condition of slippage without shear stresses is considered. It is proved that the essential spectrum of the problem is a finite set of segments located on the real axis. The discrete spectrum lies on the real axis, with the possible exception of a finite number of complex conjugate eigenvalues. The spectrum of the problem contains a subsequence of eigenvalues with a limit point at infinity and a power-law asymptotic distribution. The asymptotic behavior of solutions to the evolution problem is studied.
Keywords: mixture of fluids, spectral problem, essential spectrum, discrete spectrum, solution asymptotics.
Mots-clés : compressible viscous fluid
@article{SEMR_2023_20_2_a51,
     author = {D. A. Zakora},
     title = {The problem on small motions of a mixture of viscous compressible fluids},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1552--1589},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a51/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - The problem on small motions of a mixture of viscous compressible fluids
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1552
EP  - 1589
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a51/
LA  - ru
ID  - SEMR_2023_20_2_a51
ER  - 
%0 Journal Article
%A D. A. Zakora
%T The problem on small motions of a mixture of viscous compressible fluids
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1552-1589
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a51/
%G ru
%F SEMR_2023_20_2_a51
D. A. Zakora. The problem on small motions of a mixture of viscous compressible fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1552-1589. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a51/

[1] A. Al-Sharif, K. Chamniprasart, K.R. Rajagopal, A.Z. Szeri, “Lubrication with binary mixtures: Liquid-liquid emulsion”, J. Tribol., 115:1 (1993), 46–55 | DOI

[2] T.Ya. Azizov, I.S. Iokhvidov, Fundamentals of the theory of linear operators in spaces with an indefinite metric, Nauka, M., 1986 | MR | Zbl

[3] T.Ya. Azizov, N.D. Kopachevsky, L.D. Orlova, “Evolutionary and spectral problems generated by the problem of small movements of viscoelastic fluid”, Tr. St.-Peterbg. Mat. Obshch., 6 (1988), 5–33 | MR

[4] F.V. Atkinson, H. Langer, R. Mennicken, A.A. Shkalikov, “The essential spectrum of some matrix operators”, Math. Nachr., 167 (1994), 5–20 | DOI | MR | Zbl

[5] S. Baris, “Some simple unsteady unidirectional flows of a binary mixture of incompressible Newtonian fluids”, Internat. J. Engrg. Sci., 40:18 (2002), 2023–2040 | DOI | MR

[6] S. Baris, “Unsteady flows of a binary mixture of incompressible Newtonian fluids in an annulus”, Int. J. Eng. Sci., 43:19-20 (2005), 1471–1485 | DOI | MR | Zbl

[7] S. Baris, M.S. Demir, “Flow of a binary mixture of fluids in a semicircular duct”, Int. J. Phys. Sci., 7 (2012), 1333–1345 | DOI

[8] S. Baris, M.S. Demir, “Hydromagnetic flows of a mixture of two Newtonian fluids between two parallel plates”, Int. J. Phys. Sci., 8:9 (2013), 343–355

[9] S. Baris, M. Dokuz, “Analytical solutions for some simple flows of a binary mixture of incompressible Newtonian fluids”, Turkish J. Eng. Env. Sci., 26:6 (2002), 455–471 | MR

[10] S. Baris, M. Dokuz, “Flow of a binary mixture of incompressible Newtonian fluids in a rectangular channel”, Int. J. Eng. Sci., 43:1-2 (2005), 171–188 | DOI | MR | Zbl

[11] C.E. Beevers, R.E. Craine, “On the determination of response functions for a binary mixture of incompressible Newtonian fluids”, Int. J. Eng. Sci., 20:6 (1982), 737–745 | DOI | MR | Zbl

[12] J.J. Benner, F. Sadeghi, M.R. Hoeprich, M.C. Frank, “Lubricating properties of water in oil emulsions”, J. Tribol., 128:2 (2006), 296–311 | DOI

[13] Yu.M. Berezansky, Expansions in eigenfunctions of selfadjoint operators, Naukova dumka, Kiev, 1965 | MR | Zbl

[14] M.Sh. Birman, M.Z. Solomjak, “Asymptotic behavior of the spectrum of differential equations”, Itogi Nauki Tehn., Ser. Mat. Anal., 14 (1977), 5–58 | MR | Zbl

[15] D. Bresch, V. Giovangigli, E. Zatorska, “Two-velocity hydrodynamics in fluid mechanics. I. Well posedness for zero Mach number systems”, J. Math. Pures Appl. (9), 104:4 (2015), 762–800 | DOI | MR | Zbl

[16] D. Bresch, B. Desjardins, E. Zatorska, “Two-velocity hydrodynamics in fluid mechanics. II. Existence of global $k$-entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities”, J. Math. Pures Appl. (9), 104:4 (2015), 801–836 | DOI | MR | Zbl

[17] A.Yu. Chebotarev, “Inhomogeneous boundary-value problem of radiation heat transfer for a multicomponent medium”, Dal'nevost. Mat. Zh., 20:1 (2020), 108–113 | MR | Zbl

[18] I.V. Denisova, V.A. Solonnikov, “Global solvability of a problem governing the motion of two incompressible capillary fluids in a container”, J. Math. Sci., New York, 185:5 (2012), 668–686 | DOI | MR | Zbl

[19] V.N. Dorovsky, Yu.V. Perepechko, “The theory of partial melting”, Geologiya Geofizika, 9 (1989), 56–64

[20] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer-Verlag, Berlin, 2000 | MR | Zbl

[21] E. Feireisl, “On weak solutions to a diffuse interface model of a binary mixture of compressible fluids”, Discrete Contin. Dyn. Syst. Ser. S, 9:1 (2016), 173–183 | MR | Zbl

[22] K.V. Forduk, “Oscillations of a system of rigid bodies partially filled with viscous fluids under the action of an elastic damping device”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 42 (2022), 103–120 | MR | Zbl

[23] M. Faierman, R.J. Fries, R. Mennicken, M. Möller, “On the essential spectrum of the linearized Navier-Stokes operator”, Integral Equations Oper. Theory, 38:1 (2000), 9–27 | DOI | MR | Zbl

[24] J. Frehse, S. Goj, J. Málek, “A Stokes-like system for mixtures”, Nonlinear problems in mathematical physics and related topics II, In honour of Professor O. A. Ladyzhenskaya, eds. Birman Michael Sh. et al., Kluwer, New York, 2002 | MR | Zbl

[25] J. Frehse, S. Goj, J. Málek, “On a Stokes-like system for mixtures of fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl

[26] J. Frehse, S. Goj, J. Málek, “A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum”, Appl. Math., Praha, 50:6 (2005), 527–541 | DOI | MR | Zbl

[27] J. Frehse, W. Weigant, “On quasi-stationary models of mixtures of compressible fluids”, Appl. Math., Praha, 53:4 (2008), 319–345 | DOI | MR | Zbl

[28] V. Giovangigli, M. Pokorný, E. Zatorska, “On the steady flow of reactive gaseous mixture”, Analysis, München, 35:4 (2015), 319–341 | DOI | MR | Zbl

[29] I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of linear operators, v. I, Birkhäuser Verlag, Basel etc, 1990 | MR | Zbl

[30] J.A. Goldstein, Semigroups of linear operators and applications, Oxford University Press, Oxford, 1985 | MR | Zbl

[31] G. Grubb, G. Geymonat, “The essential spectrum of elliptic systems of mixed order”, Math. Ann., 227 (1977), 247–276 | DOI | MR | Zbl

[32] Kh.Kh. Imomnazarov, Sh.Kh. Imomnazarov, M.M. Mamatkulov, E.G. Chernyh, “A fundamental solution to the stationary equation for two-velocity hydrodynamics with single pressure”, Sib. Zh. Ind. Mat., 17:4 (2014), 60–66 | MR | Zbl

[33] T. Kato, Perturbation theory of linear operators, Mir, M., 1972 | MR | Zbl

[34] A.N. Kozhevnikov, Functional methods of mathematical physics. Tutorial, Izd-vo MAI, M., 1991 | MR

[35] A. Kozhevnikov, T. Skubachevskaya, “Some applications of pseudo-differential operators to elasticity”, Hokkaido Math. J., 26:2 (1997), 297–322 | DOI | MR | Zbl

[36] S.G. Krein, Linear differential equations in a Banach space, Nauka, M., 1967 | MR | Zbl

[37] N.A. Kucher, A.E. Mamontov, D.A. Prokudin, “Stationary solutions to the equations of dynamics of mixtures of heat-conductive compressible viscous fluids”, Sib. Math. J., 53:6 (2012), 1075–1088 | DOI | MR | Zbl

[38] P. Lancaster, Theory of matrices, Academic Press, New York-London, 1969 | MR | Zbl

[39] S.-W. Lo, T.-C. Yang, H.-S. Lin, “The lubricity of oil-in-water emulsion in cold strip rolling process under mixed lubrication”, Tribology International, 66 (2013), 125–133 | DOI

[40] A.E. Mamontov, D.A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods Appl. Anal., 20:2 (2013), 179–196 | DOI | MR | Zbl

[41] A.E. Mamontov, D.A. Prokudin, “Solubility of a stationary boundary-value problem for the eqnarrays of motion of a one-temperature mixture of viscous compressible heat-conducting fluids”, Izv. Math., 78:3 (2014), 554–579 | DOI | MR | Zbl

[42] A.E. Mamontov, D.A. Prokudin, “Solvability of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Sib. Èlektron. Mat. Izv., 13 (2016), 541–583 | MR | Zbl

[43] A.E. Mamontov, D.A. Prokudin, “Solubility of unsteady equations of multi-component viscous compressible fluids”, Izv. Math., 82:1 (2018), 140–185 | DOI | MR | Zbl

[44] A.E. Mamontov, D.A. Prokudin, “Solubility of unsteady equations of the three-dimensional motion of two-component viscous compressible heat-conducting fluids”, Izv. Math., 85:4 (2021), 755–812 | DOI | MR | Zbl

[45] A.S. Marcus, V.I. Matsaev, “A theorem on comparison of spectra and spectral asymptotics for a Keldysh pencil”, Mat. Sb., N. Ser., 123(165):3 (1984), 391–406 | MR | Zbl

[46] R. Mennicken, A.A. Shkalikov, “Spectral decomposition of symmetric operator matrices”, Math. Nachr., 179 (1996), 259–273 | DOI | MR | Zbl

[47] M. Massoudi, “Flow of a binary mixture of linearly incompressible viscous fluids between two horizontal parallel plates”, Mech. Res. Commun., 35:8 (2008), 603–608 | DOI | MR | Zbl

[48] P.B. Mucha, M. Pokorný, E. Zatorska, “Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution”, SIAM J. Math. Anal., 47:5 (2015), 3747–3797 | DOI | MR | Zbl

[49] R.I. Nigmatulin, Dynamics of multiphase media, v. 1, Nauka, M., 1987

[50] O.A. Oleǐnik, A.G. Iosif'ian, A.S. Shamaev, Mathematical problems in the theory of strongly inhomogeneous elastic media, Izd-vo MGU, M., 1990 | MR | Zbl

[51] P.K. Pal, V.N. Maslennikova, “Spectral properties of operators in the problem of the oscillation of a compressible fluid in rotating containers”, Sov. Math., Dokl., 31 (1985), 318–322 | MR | Zbl

[52] K.L. Rajagopal, L. Tao, Mechanics of mixtures, Series on Advances in Mathematics for Applied Sciences, 35, World Scientific, Singapore, 1995 | MR | Zbl

[53] K. Rektorys, Variational Methods in Mathematical Physics and Engineering, Mir, M., 1985 | MR | Zbl

[54] V.A. Solonnikov, “General boundary value problems for Douglis-Nirenberg elliptic systems”, Proc. Steklov Inst. Math., 92 (1966), 269–339 | Zbl

[55] K.S. Surana, M. Powell, J.N. Reddy, “A simple mixture theory for $\nu$ Newtonian and generalized Newtonian constituents”, Contin. Mech. Thermodyn., 26:1 (2014), 33–65 | DOI | MR | Zbl

[56] C. Tretter, Spectral theory of block operator matrices and applications, Imperial College Press, London, 2008 | MR | Zbl

[57] L.R. Volevich, “Solvability of boundary value problems for general elliptic systems”, Mat. Sb., N. Ser., 68(110):3 (1965), 373–416 | MR | Zbl

[58] S.H. Wang, A.Z. Szeri, K.R. Rajagopal, “Lubrication with emulsion in cold rolling”, J. Tribol., 115:3 (1993), 523–531 | DOI

[59] D.A. Zakora, “Asymptotics of solutions to a system of connected incomplete second-order integro-differential operator equations”, Sib. Èlektron. Mat. Izv., 15 (2018), 971–986 | MR | Zbl

[60] D.A. Zakora, N.D. Kopachevsky, “To the problem of small oscillations of a system of two viscoelastic fluids filling immovable vessel: model problem”, J. Math. Sci., New York, 265:6 (2022), 888–912 | DOI | MR | Zbl

[61] D.A. Zakora, “Asymptotic behavior of solutions of a complete second-order integro-differential equation”, Contemporary Mathematics. Fundamental Directions, 68, no. 3, 2022, 451–466 | DOI | MR

[62] D.A. Zakora, “Spectral properties of the operator in the problem of oscillations in a mixture of viscous compressible fluids”, Differ. Equ., 59:4 (2023), 473–490 | DOI | MR | Zbl

[63] E. Zatorska, “On the flow of chemically reacting gaseous mixture”, J. Differ. Equations, 253:12 (2012), 3471–3500 | DOI | MR | Zbl