On profinite polyadic groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 814-823

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of profinite polyadic groups and we prove that a polyadic topological group $(G, f)$ is profinite, if and only if, it is compact, Hausdorff, totally disconnected. More generally, for a pseudo-variety (or a formation) of finite groups $\mathfrak{X}$, we define the class of $\mathfrak{X}$-polyadic groups, and we show that a polyadic group $(G, f)$ is pro-$\mathfrak{X}$, if and only if, it is compact, Hausdorff, totally disconnected and for every open congruence $R$, the quotient $(G/R, f_R)$ is $\mathfrak{X}$-polyadic.
Keywords: Polyadic groups, $n$-ary groups, Profinite groups and polyadic groups, Post's cover and retract of a polyadic group.
@article{SEMR_2023_20_2_a5,
     author = {M. Shahryari and M. Rostami},
     title = {On profinite polyadic groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {814--823},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a5/}
}
TY  - JOUR
AU  - M. Shahryari
AU  - M. Rostami
TI  - On profinite polyadic groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 814
EP  - 823
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a5/
LA  - en
ID  - SEMR_2023_20_2_a5
ER  - 
%0 Journal Article
%A M. Shahryari
%A M. Rostami
%T On profinite polyadic groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 814-823
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a5/
%G en
%F SEMR_2023_20_2_a5
M. Shahryari; M. Rostami. On profinite polyadic groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 814-823. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a5/