On profinite polyadic groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 814-823.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of profinite polyadic groups and we prove that a polyadic topological group $(G, f)$ is profinite, if and only if, it is compact, Hausdorff, totally disconnected. More generally, for a pseudo-variety (or a formation) of finite groups $\mathfrak{X}$, we define the class of $\mathfrak{X}$-polyadic groups, and we show that a polyadic group $(G, f)$ is pro-$\mathfrak{X}$, if and only if, it is compact, Hausdorff, totally disconnected and for every open congruence $R$, the quotient $(G/R, f_R)$ is $\mathfrak{X}$-polyadic.
Keywords: Polyadic groups, $n$-ary groups, Profinite groups and polyadic groups, Post's cover and retract of a polyadic group.
@article{SEMR_2023_20_2_a5,
     author = {M. Shahryari and M. Rostami},
     title = {On profinite polyadic groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {814--823},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a5/}
}
TY  - JOUR
AU  - M. Shahryari
AU  - M. Rostami
TI  - On profinite polyadic groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 814
EP  - 823
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a5/
LA  - en
ID  - SEMR_2023_20_2_a5
ER  - 
%0 Journal Article
%A M. Shahryari
%A M. Rostami
%T On profinite polyadic groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 814-823
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a5/
%G en
%F SEMR_2023_20_2_a5
M. Shahryari; M. Rostami. On profinite polyadic groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 814-823. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a5/

[1] V. Artamonov, “Free $n$-groups”, Math. Notes, 1970:8 (1971), 750–754 | MR | Zbl

[2] W. Dörnte, “Unterschungen über einen verallgemeinerten Gruppenbegriff”, M. Z., 29 (1928), 1–19 | DOI | MR | Zbl

[3] W. Dudek, “Remarks on $n$-groups”, Demonstr. Math., 13 (1980), 165–181 | MR | Zbl

[4] W. Dudek, K. Glazek, “Around the Hosszú-Gluskin theorem for $n$-ary groups”, Discrete Math., 308:21 (2008), 4861–4876 | DOI | MR | Zbl

[5] W. Dudek, M. Shahryari, “Representation theory of polyadic groups”, Algebr. Represent. Theory, 15:1 (2012), 29–51 | DOI | MR | Zbl

[6] M. Hosszú, “On the explicit form of $n$-groups operations”, Publ. Math. Debr., 10 (1963), 88–92 | DOI | MR | Zbl

[7] E. Kasner, “An extension of the group concept”, Bull. Amer. Math. Soc., 10 (1904), 290–291 | MR

[8] H. Khodabandeh, On free polyadic groups, 2019, arXiv: 1905.11821

[9] H. Khodabandeh, M. Shahryari, “On the representations and automorphisms of polyadic groups”, Commun. Algebra, 40:6 (2012), 2199–2212 | DOI | MR | Zbl

[10] H. Khodabandeh, M. Shahryari, “Simple polyadic groups”, Sib. Math. J., 55:4 (2014), 734–744 | DOI | MR | Zbl

[11] H. Khodabandeh, M. Shahryari, “Equations in polyadic groups”, Commun. Algebra, 45:3 (2017), 1227–1238 | DOI | MR | Zbl

[12] E. Post, “Polyadic groups”, Trans. Am. Math. Soc., 48 (1940), 208–350 | DOI | MR | Zbl

[13] M. Shahryari, “Representations of finite polyadic groups”, Commun. Algebra, 40:5 (2012), 1625–1631 | DOI | MR | Zbl

[14] E. Sokolov, “On the Gluskin-Hosszú theorem for Dornte $n$-groups”, Mat. Issled., 39 (1976), 187–189 | MR | Zbl

[15] L. Ribes, P. Zalesskii, Profinite groups, 2nd ed., Springer, Berlin, 2010 | MR | Zbl