Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1269-1289.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the linear stability of a resting state for flows of incompressible viscoelastic polymeric fluid in an infinite cylindrical channel in axisymmetric perturbation class. We use structurally-phenomenological Vinogradov-Pokrovski model as our mathematical model. We formulate two equations that define the spectrum of the problem. Our numerical experiments show that with the growth of perturbations frequency along the channel axis there appear eigenvalues with positive real part for the radial velocity component of the first spectral equation. That guarantees linear Lyapunov instability of the resting state.
Keywords: incompressible viscoelastic polymeric medium, rheological correlation, resting state, linearized mixed problem, Lyapunov stability.
@article{SEMR_2023_20_2_a48,
     author = {D. L. Tkachev and E. A. Biberdorf},
     title = {Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel {(Vinogradov-Pokrovski} model)},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1269--1289},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a48/}
}
TY  - JOUR
AU  - D. L. Tkachev
AU  - E. A. Biberdorf
TI  - Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1269
EP  - 1289
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a48/
LA  - en
ID  - SEMR_2023_20_2_a48
ER  - 
%0 Journal Article
%A D. L. Tkachev
%A E. A. Biberdorf
%T Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model)
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1269-1289
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a48/
%G en
%F SEMR_2023_20_2_a48
D. L. Tkachev; E. A. Biberdorf. Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model). Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1269-1289. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a48/

[1] V.N. Pokrovskii, The mesoscopic theory of polymer dynamics, Springer Ser. Chem. Phys., 95, Springer, Dordrecht, 2010 | DOI

[2] Yu.A. Altukhov, A.S. Gusev, G.V. Pishnograi, Introduction into mesoscopic theory of flowing polymeric systems, Alt. GPA, Barnaul, 2012

[3] J.G. Oldroyd, “On the formulation of rheological equations of state”, Proc. R. Soc. Lond., Ser. A, 200 (1950), 523–541 | DOI | MR | Zbl

[4] R.B. Bird, P.J. Dotson, N.L. Johnson, “Polymer solution rheology based on a finitely extensible bead-spring chain model”, J. Non-Newtonian Fluid Mech., 7 (1980), 213–235 | DOI | Zbl

[5] M.D. Chilcott, J.M. Ralliston, “Creeping flow of dilute polymer solutions past cylinders and spheres”, J. Non-Newtonian Fluid Mech., 29:3 (1988), 381–432 | DOI | Zbl

[6] J. Remmelgas, G. Harrison, L.G. Leal, “A differential constitutive equation for entangled polymer solutions”, J. Non-Newtonian Fluid Mech., 80:2-3 (1999), 115–134 | DOI | Zbl

[7] V.N. Pokrovski, Statistical mechanics of dilute suspension, Nauka, M., 1978

[8] S.A. Zinovich, I.E. Golovicheva, G.V. Pyshnograi, “Influence of the molecular mass on shear and lateral viscosity of linear polymers”, J. Appl. Mech. Tech. Phys., 41:2 (2000), 347–352 | DOI | Zbl

[9] G. Pyshnograi, D. Merzlikina, P. Filip, R. Pivokonsky, “Mesoscopic single and multi-mode rheological models for polymeric melts viscometric flow description”, WSEAS transactions on heat and mass transfer, 13 (2018), 49–65

[10] A.M. Blokhin, D.L. Tkachev, “Linear asymptotic instability of a stationary flow of a polymeric medium in a plane channel in the case of periodic perturbations”, J. Appl. Ind. Math., 8:4 (2014), 467–478 | DOI | MR | Zbl

[11] A.M. Blokhin, A.V. Yegitov, D.L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel”, Comput. Math. Math. Phys., 55:5 (2015), 848–873 | DOI | MR | Zbl

[12] Alexander Blokhin, Dmitry Tkachev, “Spectral asymptotics of a linearized problem about flow of an incompressible polymeric fluid. Base flow is analogue of a Poiseuille flow”, AIP Conf. Proc., 2027, 2018, 030028 | DOI

[13] A.M. Blokhin, D.L. Tkachev, “Analogue of the Poiseuille flow for incompressible polymeric fluid with volume charge. Asymptotics of the linearized problem spectrum”, J. Phys. Conf. Ser., 894 (2017), 012096 | DOI | MR

[14] A.M. Blokhin, A.V. Yegitov, D.L. Tkachev, “Asymptotics of the spectrum of a linearized problem of the stability of a stationary flow of an incompressible polymer fluid with a space charge”, Comput. Math. Math. Phys., 58:1 (2018), 102–117 | DOI | MR | Zbl

[15] Alexander Blokhin, Dmitry Tkachev, Aleksey Yegitov, “Spectral asymptotics of a linearized problem for an incompressible weakly conducting polymeric fluid”, Z. Angrew. Math. Mech., 98:4 (2018), 589–601 | DOI | MR

[16] A.M. Blokhin, D.L. Tkachev, “Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, J. Hyperbolic Differ. Equ., 16:4 (2019), 793–817 | DOI | MR | Zbl

[17] A.M. Blokhin, D.L. Tkachev, “Stability of the Poiseuille-type flow for a MHD model of an incompressible polymeric fluid”, Eur. J. Mech., B. Fluids, 80 (2020), 112–121 | DOI | MR | Zbl

[18] A.M. Blokhin, D.L. Tkachev, “Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, Fluid Dyn., 54:8 (2019), 1051–1058 | DOI | MR | Zbl

[19] A.M. Blokhin, D.L. Tkachev, “Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid”, Sb. Math., 211:7 (2020), 901–921 | DOI | MR | Zbl

[20] V.S. Vladimirov, Generalized functions in mathematical physics, Mir, M., 1979 | MR | Zbl

[21] L.Hörmander, The analysis of linear partial differential operators, v. I, Distribution theory and Fourier analysis, Springer-Verlag, Berlin etc, 1983 | MR | Zbl

[22] A.M. Blokhin, D.L. Tkachev, “MHD model of incompressible polymeric fluid. Linear instability of the resting state”, Complex Var. Elliptic Equ., 66:6-7 (2021), 929–944 | DOI | MR | Zbl

[23] A.M. Blokhin, D. Tkachev, “Linear instability of the resting state for the MHD model of an incompressible polymeric fluid”, AIP Conf. Proc., 2351, 2021, 040057 | DOI | MR

[24] A.M. Blokhin, D.L. Tkachev, “On Linearly Unstable Steady States of an MHD Model of an Incompressible Polymeric Fluid in the Case of Absolute Conductivity”, Sib. Adv. Math., 32 (2022), 1–12 | DOI | MR

[25] A.M. Blokhin, A.Yu. Goldin, “Linear stability of an incompressible polymer liquid at rest”, J. Math. Sci., New York, 230:1 (2018), 14–24 | DOI | MR | Zbl

[26] D.L. Tkachev, “Spectrum and linear Lyapunov instability of a resting state for flows of an incompressible polymeric fluid”, J. Math. Anal. Appl., 522:1 (2023), 126914 | DOI | MR | Zbl

[27] D.L. Tkachev, “The spectrum and Lyapunov linear instability of the stationary state for polymer fluid flows: the Vinogradov-Pokrovski model”, Sib. Math. J., 64:2 (2023), 407–423 | DOI | MR | Zbl

[28] G.I. Taylor, “Stability of a Viscous Liquid contained between Two Rotating Cylinders”, Philosophical transactions of the Royal Society A, 223:605-615 (1923), 289–343 | DOI

[29] L.I. Sedov, Continuum mechanics, v. 1, Nauka, M., 1970 | MR | Zbl

[30] L.G. Loytsyanskiy, Mechanics of liquids and gases, Pergamon Press, Oxford etc, 1972 | MR | Zbl

[31] Shih-I-Pai, Introduction to the theory of compressible flow, D. Van Nostrand Co., New York, 1959 | MR | Zbl

[32] A.M. Blokhin, A.S. Rudometova, “Stationary flows of a weakly conducting incompressible polymeric liquid between coaxial cylinders”, J. Appl. Ind. Math., 11:4 (2017), 486–493 | DOI | MR | Zbl

[33] A.M. Blokhin, R.E. Semenko, A.S. Rudometova, “Magnetohydrodynamic vortex motion of an incompressible polymeric fluid”, J. Appl. Ind. Math., 15:1 (2021), 7–16 | DOI | MR | Zbl

[34] M. Abramowitz, I. Stegun, Handbook of mathematical functions, NBS, 1964 | MR

[35] E. Kamke, Manual of ordinary differential equations, Nauka, M., 1976 | MR

[36] P. Hartman, Ordinary differential equations, 2nd ed. Reprint, Birkhäuser, Boston-Basel-Stuttgart, 1982 | MR | Zbl

[37] E.A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York etc, 1955 | MR | Zbl

[38] L.N. Trefethen, Spectral methods in MATLAB, SIAM, Philadelphia, 2000 | MR | Zbl