Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a48, author = {D. L. Tkachev and E. A. Biberdorf}, title = {Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel {(Vinogradov-Pokrovski} model)}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1269--1289}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a48/} }
TY - JOUR AU - D. L. Tkachev AU - E. A. Biberdorf TI - Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model) JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1269 EP - 1289 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a48/ LA - en ID - SEMR_2023_20_2_a48 ER -
%0 Journal Article %A D. L. Tkachev %A E. A. Biberdorf %T Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model) %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 1269-1289 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a48/ %G en %F SEMR_2023_20_2_a48
D. L. Tkachev; E. A. Biberdorf. Spectrum of a problem about the flow of a polymeric viscoelastic fluid in a cylindrical channel (Vinogradov-Pokrovski model). Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1269-1289. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a48/
[1] V.N. Pokrovskii, The mesoscopic theory of polymer dynamics, Springer Ser. Chem. Phys., 95, Springer, Dordrecht, 2010 | DOI
[2] Yu.A. Altukhov, A.S. Gusev, G.V. Pishnograi, Introduction into mesoscopic theory of flowing polymeric systems, Alt. GPA, Barnaul, 2012
[3] J.G. Oldroyd, “On the formulation of rheological equations of state”, Proc. R. Soc. Lond., Ser. A, 200 (1950), 523–541 | DOI | MR | Zbl
[4] R.B. Bird, P.J. Dotson, N.L. Johnson, “Polymer solution rheology based on a finitely extensible bead-spring chain model”, J. Non-Newtonian Fluid Mech., 7 (1980), 213–235 | DOI | Zbl
[5] M.D. Chilcott, J.M. Ralliston, “Creeping flow of dilute polymer solutions past cylinders and spheres”, J. Non-Newtonian Fluid Mech., 29:3 (1988), 381–432 | DOI | Zbl
[6] J. Remmelgas, G. Harrison, L.G. Leal, “A differential constitutive equation for entangled polymer solutions”, J. Non-Newtonian Fluid Mech., 80:2-3 (1999), 115–134 | DOI | Zbl
[7] V.N. Pokrovski, Statistical mechanics of dilute suspension, Nauka, M., 1978
[8] S.A. Zinovich, I.E. Golovicheva, G.V. Pyshnograi, “Influence of the molecular mass on shear and lateral viscosity of linear polymers”, J. Appl. Mech. Tech. Phys., 41:2 (2000), 347–352 | DOI | Zbl
[9] G. Pyshnograi, D. Merzlikina, P. Filip, R. Pivokonsky, “Mesoscopic single and multi-mode rheological models for polymeric melts viscometric flow description”, WSEAS transactions on heat and mass transfer, 13 (2018), 49–65
[10] A.M. Blokhin, D.L. Tkachev, “Linear asymptotic instability of a stationary flow of a polymeric medium in a plane channel in the case of periodic perturbations”, J. Appl. Ind. Math., 8:4 (2014), 467–478 | DOI | MR | Zbl
[11] A.M. Blokhin, A.V. Yegitov, D.L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel”, Comput. Math. Math. Phys., 55:5 (2015), 848–873 | DOI | MR | Zbl
[12] Alexander Blokhin, Dmitry Tkachev, “Spectral asymptotics of a linearized problem about flow of an incompressible polymeric fluid. Base flow is analogue of a Poiseuille flow”, AIP Conf. Proc., 2027, 2018, 030028 | DOI
[13] A.M. Blokhin, D.L. Tkachev, “Analogue of the Poiseuille flow for incompressible polymeric fluid with volume charge. Asymptotics of the linearized problem spectrum”, J. Phys. Conf. Ser., 894 (2017), 012096 | DOI | MR
[14] A.M. Blokhin, A.V. Yegitov, D.L. Tkachev, “Asymptotics of the spectrum of a linearized problem of the stability of a stationary flow of an incompressible polymer fluid with a space charge”, Comput. Math. Math. Phys., 58:1 (2018), 102–117 | DOI | MR | Zbl
[15] Alexander Blokhin, Dmitry Tkachev, Aleksey Yegitov, “Spectral asymptotics of a linearized problem for an incompressible weakly conducting polymeric fluid”, Z. Angrew. Math. Mech., 98:4 (2018), 589–601 | DOI | MR
[16] A.M. Blokhin, D.L. Tkachev, “Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, J. Hyperbolic Differ. Equ., 16:4 (2019), 793–817 | DOI | MR | Zbl
[17] A.M. Blokhin, D.L. Tkachev, “Stability of the Poiseuille-type flow for a MHD model of an incompressible polymeric fluid”, Eur. J. Mech., B. Fluids, 80 (2020), 112–121 | DOI | MR | Zbl
[18] A.M. Blokhin, D.L. Tkachev, “Stability of Poiseuille-type flows for an MHD model of an incompressible polymeric fluid”, Fluid Dyn., 54:8 (2019), 1051–1058 | DOI | MR | Zbl
[19] A.M. Blokhin, D.L. Tkachev, “Stability of Poiseuille-type flows in an MHD model of an incompressible polymeric fluid”, Sb. Math., 211:7 (2020), 901–921 | DOI | MR | Zbl
[20] V.S. Vladimirov, Generalized functions in mathematical physics, Mir, M., 1979 | MR | Zbl
[21] L.Hörmander, The analysis of linear partial differential operators, v. I, Distribution theory and Fourier analysis, Springer-Verlag, Berlin etc, 1983 | MR | Zbl
[22] A.M. Blokhin, D.L. Tkachev, “MHD model of incompressible polymeric fluid. Linear instability of the resting state”, Complex Var. Elliptic Equ., 66:6-7 (2021), 929–944 | DOI | MR | Zbl
[23] A.M. Blokhin, D. Tkachev, “Linear instability of the resting state for the MHD model of an incompressible polymeric fluid”, AIP Conf. Proc., 2351, 2021, 040057 | DOI | MR
[24] A.M. Blokhin, D.L. Tkachev, “On Linearly Unstable Steady States of an MHD Model of an Incompressible Polymeric Fluid in the Case of Absolute Conductivity”, Sib. Adv. Math., 32 (2022), 1–12 | DOI | MR
[25] A.M. Blokhin, A.Yu. Goldin, “Linear stability of an incompressible polymer liquid at rest”, J. Math. Sci., New York, 230:1 (2018), 14–24 | DOI | MR | Zbl
[26] D.L. Tkachev, “Spectrum and linear Lyapunov instability of a resting state for flows of an incompressible polymeric fluid”, J. Math. Anal. Appl., 522:1 (2023), 126914 | DOI | MR | Zbl
[27] D.L. Tkachev, “The spectrum and Lyapunov linear instability of the stationary state for polymer fluid flows: the Vinogradov-Pokrovski model”, Sib. Math. J., 64:2 (2023), 407–423 | DOI | MR | Zbl
[28] G.I. Taylor, “Stability of a Viscous Liquid contained between Two Rotating Cylinders”, Philosophical transactions of the Royal Society A, 223:605-615 (1923), 289–343 | DOI
[29] L.I. Sedov, Continuum mechanics, v. 1, Nauka, M., 1970 | MR | Zbl
[30] L.G. Loytsyanskiy, Mechanics of liquids and gases, Pergamon Press, Oxford etc, 1972 | MR | Zbl
[31] Shih-I-Pai, Introduction to the theory of compressible flow, D. Van Nostrand Co., New York, 1959 | MR | Zbl
[32] A.M. Blokhin, A.S. Rudometova, “Stationary flows of a weakly conducting incompressible polymeric liquid between coaxial cylinders”, J. Appl. Ind. Math., 11:4 (2017), 486–493 | DOI | MR | Zbl
[33] A.M. Blokhin, R.E. Semenko, A.S. Rudometova, “Magnetohydrodynamic vortex motion of an incompressible polymeric fluid”, J. Appl. Ind. Math., 15:1 (2021), 7–16 | DOI | MR | Zbl
[34] M. Abramowitz, I. Stegun, Handbook of mathematical functions, NBS, 1964 | MR
[35] E. Kamke, Manual of ordinary differential equations, Nauka, M., 1976 | MR
[36] P. Hartman, Ordinary differential equations, 2nd ed. Reprint, Birkhäuser, Boston-Basel-Stuttgart, 1982 | MR | Zbl
[37] E.A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York etc, 1955 | MR | Zbl
[38] L.N. Trefethen, Spectral methods in MATLAB, SIAM, Philadelphia, 2000 | MR | Zbl