Algebraic ovals and rational integrals of Darboux-type systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1108-1124

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question of the existence of algebraic solutions, polynomial and rational integrals for systems of ordinary differential equations of the form $\dot x=x+P_n(x,y),\ \dot y=y+Q_n(x,y)$, where $P_n(x,y), $ $Q_n(x,y)$ are homogeneous polynomials of $n$th degree.
Keywords: polynomial systems, rational integrals
Mots-clés : algebraic limit cycles, non-algebraic limit cycles, phase portraits.
@article{SEMR_2023_20_2_a47,
     author = {E. P. Volokitin and V. M. Cheresiz},
     title = {Algebraic ovals and rational integrals of {Darboux-type} systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1108--1124},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - V. M. Cheresiz
TI  - Algebraic ovals and rational integrals of Darboux-type systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1108
EP  - 1124
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/
LA  - ru
ID  - SEMR_2023_20_2_a47
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A V. M. Cheresiz
%T Algebraic ovals and rational integrals of Darboux-type systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1108-1124
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/
%G ru
%F SEMR_2023_20_2_a47
E. P. Volokitin; V. M. Cheresiz. Algebraic ovals and rational integrals of Darboux-type systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1108-1124. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/