Algebraic ovals and rational integrals of Darboux-type systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1108-1124
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the question of the existence of algebraic solutions, polynomial and rational integrals for systems of ordinary differential equations of the form $\dot x=x+P_n(x,y),\ \dot y=y+Q_n(x,y)$, where $P_n(x,y), $ $Q_n(x,y)$ are homogeneous polynomials of $n$th degree.
Keywords:
polynomial systems, rational integrals
Mots-clés : algebraic limit cycles, non-algebraic limit cycles, phase portraits.
Mots-clés : algebraic limit cycles, non-algebraic limit cycles, phase portraits.
@article{SEMR_2023_20_2_a47,
author = {E. P. Volokitin and V. M. Cheresiz},
title = {Algebraic ovals and rational integrals of {Darboux-type} systems},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1108--1124},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/}
}
TY - JOUR AU - E. P. Volokitin AU - V. M. Cheresiz TI - Algebraic ovals and rational integrals of Darboux-type systems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1108 EP - 1124 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/ LA - ru ID - SEMR_2023_20_2_a47 ER -
E. P. Volokitin; V. M. Cheresiz. Algebraic ovals and rational integrals of Darboux-type systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1108-1124. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/