Algebraic ovals and rational integrals of Darboux-type systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1108-1124.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question of the existence of algebraic solutions, polynomial and rational integrals for systems of ordinary differential equations of the form $\dot x=x+P_n(x,y),\ \dot y=y+Q_n(x,y)$, where $P_n(x,y), $ $Q_n(x,y)$ are homogeneous polynomials of $n$th degree.
Keywords: polynomial systems, rational integrals
Mots-clés : algebraic limit cycles, non-algebraic limit cycles, phase portraits.
@article{SEMR_2023_20_2_a47,
     author = {E. P. Volokitin and V. M. Cheresiz},
     title = {Algebraic ovals and rational integrals of {Darboux-type} systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1108--1124},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - V. M. Cheresiz
TI  - Algebraic ovals and rational integrals of Darboux-type systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1108
EP  - 1124
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/
LA  - ru
ID  - SEMR_2023_20_2_a47
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A V. M. Cheresiz
%T Algebraic ovals and rational integrals of Darboux-type systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1108-1124
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/
%G ru
%F SEMR_2023_20_2_a47
E. P. Volokitin; V. M. Cheresiz. Algebraic ovals and rational integrals of Darboux-type systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1108-1124. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/

[1] G. Darboux, “Mémoire sur les équations différentielles algébrique du premier ordre et du premier degré”, Darboux Bull. (2) II, 1878, 60–96 | Zbl

[2] H. Poincaré, “Sur lìntégration algébrique des équations différentielles du premier ordre et du premier degré”, C. R., 112 (1891), 761–764 | Zbl

[3] V.N. Gorbuzov, A.A. Samodurov, The Darboux equation and its analogies, Textbook, Grodnenskij Gosudarstvennyj Universitet, Grodno, 1985 | Zbl

[4] J. Llibre, X. Zhang, “A survay on algebraic end explicit non-algebraic limit cycles in planar differential systems”, Expo. Math., 39:1 (2021), 48–61 | DOI | MR | Zbl

[5] A. Bendjeddou, J. Llibre, T. Salhi, “Dynamics of the polynomial differential systems with homogeneous nonlinearities and a star node”, J. Diff. Equ., 254:8 (2013), 3530–3537 | DOI | MR | Zbl

[6] E.P. Volokitin, V.M. Cheresiz, “The qualitative analysis of the plane polynomial Darboux systems”, Sib. Èlectron. Mat. Izv., 13 (2016), 1170–1186 | MR | Zbl

[7] V.M. Cheresiz, E.P. Volokitin, “The algebraic curves of planar polynomial differential systems with homogeneous nonlinearities”, Electron. J. Qual. Theory Differ. Equ., 2021 (2021), 51 | DOI | MR | Zbl

[8] Alarcón B., Castro S. B. S. D., Labouriau I. S., Global planar dynamics with star nodes: beyond Hilbert's 16th problem, 2021, arXiv: 2106.07516

[9] J. Giné, M. Grau, “Coexistence of algebraic and non-algebraic limit cycles, explicity given, using Riccati equations”, Nonlinearity, 19:8 (2006), 1939–1950 | DOI | MR | Zbl

[10] I.A. García, M. Grau, “A survey on the inverse integrating factor”, Qual. Theory Dyn. Syst., 9:1-2 (2010), 115–166 | DOI | MR | Zbl

[11] J. Chavarriga, H. Giacomini, J. Giné, J. Llibre, “Darboux integrability and the inverse integrating factor”, J. Diff. Equ., 194:1 (2003), 116–139 | DOI | MR | Zbl

[12] A. Ferragut, J. Llibre, “On the remarkable values of the rational first integrals of polynomial vector fields”, J. Diff. Equ., 241:2 (2007), 399–417 | DOI | MR | Zbl

[13] P. Mardešić, C. Rousseau, B. Toni, “Linearization of isochronous centers”, J. Diff. Equ., 121:1 (1995), 67–108 | DOI | MR | Zbl

[14] E.P. Volokitin, “Algebraic first integrals of the polynomial systems satisfying the Cauchy–Riemann conditions”, Qual. Theory Dyn. Syst., 15:2 (2016), 575–596 | DOI | MR | Zbl

[15] E.P. Volokitin, V.M. Cheresiz, “An integrating factor of the Darboux differential systems”, Sib. Èlectron. Mat. Izv., 16 (2019), 1260–1275 | DOI | MR | Zbl

[16] J. Llibre, N. Vulpe, “Planar cubic polynomial differential systems with the maximum number of invariant stright lines”, Rocky Mt. J. Math., 36:4 (2006), 1301–1373 | DOI | MR | Zbl

[17] C. Bujac, J. Llibre, N. Vulpe, “First integrals and phase portraits of planar differential cubic systems with the maximum number of invariant stright lines”, Qual. Theory Dyn. Syst., 15:2 (2016), 327–348 | DOI | MR | Zbl