Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a47, author = {E. P. Volokitin and V. M. Cheresiz}, title = {Algebraic ovals and rational integrals of {Darboux-type} systems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1108--1124}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/} }
TY - JOUR AU - E. P. Volokitin AU - V. M. Cheresiz TI - Algebraic ovals and rational integrals of Darboux-type systems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1108 EP - 1124 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/ LA - ru ID - SEMR_2023_20_2_a47 ER -
E. P. Volokitin; V. M. Cheresiz. Algebraic ovals and rational integrals of Darboux-type systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1108-1124. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a47/
[1] G. Darboux, “Mémoire sur les équations différentielles algébrique du premier ordre et du premier degré”, Darboux Bull. (2) II, 1878, 60–96 | Zbl
[2] H. Poincaré, “Sur lìntégration algébrique des équations différentielles du premier ordre et du premier degré”, C. R., 112 (1891), 761–764 | Zbl
[3] V.N. Gorbuzov, A.A. Samodurov, The Darboux equation and its analogies, Textbook, Grodnenskij Gosudarstvennyj Universitet, Grodno, 1985 | Zbl
[4] J. Llibre, X. Zhang, “A survay on algebraic end explicit non-algebraic limit cycles in planar differential systems”, Expo. Math., 39:1 (2021), 48–61 | DOI | MR | Zbl
[5] A. Bendjeddou, J. Llibre, T. Salhi, “Dynamics of the polynomial differential systems with homogeneous nonlinearities and a star node”, J. Diff. Equ., 254:8 (2013), 3530–3537 | DOI | MR | Zbl
[6] E.P. Volokitin, V.M. Cheresiz, “The qualitative analysis of the plane polynomial Darboux systems”, Sib. Èlectron. Mat. Izv., 13 (2016), 1170–1186 | MR | Zbl
[7] V.M. Cheresiz, E.P. Volokitin, “The algebraic curves of planar polynomial differential systems with homogeneous nonlinearities”, Electron. J. Qual. Theory Differ. Equ., 2021 (2021), 51 | DOI | MR | Zbl
[8] Alarcón B., Castro S. B. S. D., Labouriau I. S., Global planar dynamics with star nodes: beyond Hilbert's 16th problem, 2021, arXiv: 2106.07516
[9] J. Giné, M. Grau, “Coexistence of algebraic and non-algebraic limit cycles, explicity given, using Riccati equations”, Nonlinearity, 19:8 (2006), 1939–1950 | DOI | MR | Zbl
[10] I.A. García, M. Grau, “A survey on the inverse integrating factor”, Qual. Theory Dyn. Syst., 9:1-2 (2010), 115–166 | DOI | MR | Zbl
[11] J. Chavarriga, H. Giacomini, J. Giné, J. Llibre, “Darboux integrability and the inverse integrating factor”, J. Diff. Equ., 194:1 (2003), 116–139 | DOI | MR | Zbl
[12] A. Ferragut, J. Llibre, “On the remarkable values of the rational first integrals of polynomial vector fields”, J. Diff. Equ., 241:2 (2007), 399–417 | DOI | MR | Zbl
[13] P. Mardešić, C. Rousseau, B. Toni, “Linearization of isochronous centers”, J. Diff. Equ., 121:1 (1995), 67–108 | DOI | MR | Zbl
[14] E.P. Volokitin, “Algebraic first integrals of the polynomial systems satisfying the Cauchy–Riemann conditions”, Qual. Theory Dyn. Syst., 15:2 (2016), 575–596 | DOI | MR | Zbl
[15] E.P. Volokitin, V.M. Cheresiz, “An integrating factor of the Darboux differential systems”, Sib. Èlectron. Mat. Izv., 16 (2019), 1260–1275 | DOI | MR | Zbl
[16] J. Llibre, N. Vulpe, “Planar cubic polynomial differential systems with the maximum number of invariant stright lines”, Rocky Mt. J. Math., 36:4 (2006), 1301–1373 | DOI | MR | Zbl
[17] C. Bujac, J. Llibre, N. Vulpe, “First integrals and phase portraits of planar differential cubic systems with the maximum number of invariant stright lines”, Qual. Theory Dyn. Syst., 15:2 (2016), 327–348 | DOI | MR | Zbl