Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a46, author = {D. K. Potapov}, title = {A variational inequality for the {Sturm--Liouville} problem with discontinuous nonlinearity}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {981--986}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/} }
TY - JOUR AU - D. K. Potapov TI - A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 981 EP - 986 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/ LA - ru ID - SEMR_2023_20_2_a46 ER -
%0 Journal Article %A D. K. Potapov %T A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 981-986 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/ %G ru %F SEMR_2023_20_2_a46
D. K. Potapov. A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 981-986. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/
[1] S. Carl, S. Heikkilä, “On the existence of minimal and maximal solutions of discontinuous functional Sturm-Liouville boundary value problems”, J. Inequal. Appl., 2005:4 (2005), 403–412 | DOI | MR | Zbl
[2] G. Bonanno, G. Molica Bisci, “Infinitely many solutions for a boundary value problem with discontinuous nonlinearities”, Bound. Value Probl., 2009, 670675 | DOI | MR | Zbl
[3] G. Bonanno, S.M. Buccellato, “Two point boundary value problems for the Sturm-Liouville equation with highly discontinuous nonlinearities”, Taiwanese J. Math., 14:5 (2010), 2059–2072 | DOI | MR | Zbl
[4] D.K. Potapov, “Sturm-Liouville's problem with discontinuous nonlinearity”, Differ. Equ., 50:9 (2014), 1272–1274 | DOI | MR | Zbl
[5] D.K. Potapov, “Existence of solutions, estimates for the differential operator, and a “separating” set in a boundary value problem for a second-order differential equation with a discontinuous nonlinearity”, Differ. Equ., 51:7 (2015), 967–972 | DOI | MR | Zbl
[6] G. Bonanno, G. D'Agui, P. Winkert, “Sturm-Liouville equations involving discontinuous nonlinearities”, Minimax Theory Appl., 1:1 (2016), 125–143 | MR | Zbl
[7] V.N. Pavlenko, E.Yu. Postnikova, “Sturm-Liouville problem for an equation with a discontinuous nonlinearity”, Chelyabinskiǐ Fiz.-Mat. Zh., 4:2 (2019), 142–154 | MR | Zbl
[8] D.K. Potapov, “A continuous approximation for a 1D analog of the Gol'dshtik model for separated flows of incompressible fluid”, Numer. Anal. Appl., 4:3 (2011), 234–238 | DOI | MR | Zbl
[9] D.K. Potapov, V.V. Yevstafyeva, “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differ. Equ., 2013 (2013), 255 | DOI | MR | Zbl
[10] S. Bensid, J. Ildefonso Díaz, “Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions”, Disc. Contin. Dyn. Syst. Ser. B, 22:5 (2017), 1757–1778 | MR | Zbl
[11] D.K. Potapov, “On a class of elliptic variational inequalities with a spectral parameter and discontinuous nonlinearity”, Sib. Math. J., 53:1 (2012), 168–173 | DOI | MR | Zbl
[12] D.K. Potapov, “Spectral problems for variational inequalities with discontinuous operators”, Math. Notes, 93:2 (2013), 288–296 | DOI | MR | Zbl
[13] V.N. Pavlenko, D.K. Potapov, “Existence of a ray of eigenvalues for equations with discontinuous operators”, Sib. Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl
[14] D.K. Potapov, “Continuous approximations of Gol'dshtik's model”, Math. Notes, 87:2 (2010), 244–247 | DOI | MR | Zbl