A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 981-986.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a variational inequality for the Sturm–Liouville problem with a nonlinearity that is discontinuous in the phase variable. Previously obtained results for variational inequalities with a spectral parameter and discontinuous operators are applied to this problem. For the variational inequality in the Sturm–Liouville problem with discontinuous nonlinearity, we have established theorems on the existence of semiregular solutions and some bound for the parameter. As an application, we consider the variational inequality for a one-dimensional analog of the Gol'dshtik model for separated flows of an incompressible fluid.
Keywords: variational inequality, discontinuous nonlinearity, Gol'dshtik's model.
Mots-clés : Sturm–Liouville's problem
@article{SEMR_2023_20_2_a46,
     author = {D. K. Potapov},
     title = {A variational inequality for the {Sturm--Liouville} problem with discontinuous nonlinearity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {981--986},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/}
}
TY  - JOUR
AU  - D. K. Potapov
TI  - A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 981
EP  - 986
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/
LA  - ru
ID  - SEMR_2023_20_2_a46
ER  - 
%0 Journal Article
%A D. K. Potapov
%T A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 981-986
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/
%G ru
%F SEMR_2023_20_2_a46
D. K. Potapov. A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 981-986. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/

[1] S. Carl, S. Heikkilä, “On the existence of minimal and maximal solutions of discontinuous functional Sturm-Liouville boundary value problems”, J. Inequal. Appl., 2005:4 (2005), 403–412 | DOI | MR | Zbl

[2] G. Bonanno, G. Molica Bisci, “Infinitely many solutions for a boundary value problem with discontinuous nonlinearities”, Bound. Value Probl., 2009, 670675 | DOI | MR | Zbl

[3] G. Bonanno, S.M. Buccellato, “Two point boundary value problems for the Sturm-Liouville equation with highly discontinuous nonlinearities”, Taiwanese J. Math., 14:5 (2010), 2059–2072 | DOI | MR | Zbl

[4] D.K. Potapov, “Sturm-Liouville's problem with discontinuous nonlinearity”, Differ. Equ., 50:9 (2014), 1272–1274 | DOI | MR | Zbl

[5] D.K. Potapov, “Existence of solutions, estimates for the differential operator, and a “separating” set in a boundary value problem for a second-order differential equation with a discontinuous nonlinearity”, Differ. Equ., 51:7 (2015), 967–972 | DOI | MR | Zbl

[6] G. Bonanno, G. D'Agui, P. Winkert, “Sturm-Liouville equations involving discontinuous nonlinearities”, Minimax Theory Appl., 1:1 (2016), 125–143 | MR | Zbl

[7] V.N. Pavlenko, E.Yu. Postnikova, “Sturm-Liouville problem for an equation with a discontinuous nonlinearity”, Chelyabinskiǐ Fiz.-Mat. Zh., 4:2 (2019), 142–154 | MR | Zbl

[8] D.K. Potapov, “A continuous approximation for a 1D analog of the Gol'dshtik model for separated flows of incompressible fluid”, Numer. Anal. Appl., 4:3 (2011), 234–238 | DOI | MR | Zbl

[9] D.K. Potapov, V.V. Yevstafyeva, “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differ. Equ., 2013 (2013), 255 | DOI | MR | Zbl

[10] S. Bensid, J. Ildefonso Díaz, “Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions”, Disc. Contin. Dyn. Syst. Ser. B, 22:5 (2017), 1757–1778 | MR | Zbl

[11] D.K. Potapov, “On a class of elliptic variational inequalities with a spectral parameter and discontinuous nonlinearity”, Sib. Math. J., 53:1 (2012), 168–173 | DOI | MR | Zbl

[12] D.K. Potapov, “Spectral problems for variational inequalities with discontinuous operators”, Math. Notes, 93:2 (2013), 288–296 | DOI | MR | Zbl

[13] V.N. Pavlenko, D.K. Potapov, “Existence of a ray of eigenvalues for equations with discontinuous operators”, Sib. Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl

[14] D.K. Potapov, “Continuous approximations of Gol'dshtik's model”, Math. Notes, 87:2 (2010), 244–247 | DOI | MR | Zbl