A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 981-986

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a variational inequality for the Sturm–Liouville problem with a nonlinearity that is discontinuous in the phase variable. Previously obtained results for variational inequalities with a spectral parameter and discontinuous operators are applied to this problem. For the variational inequality in the Sturm–Liouville problem with discontinuous nonlinearity, we have established theorems on the existence of semiregular solutions and some bound for the parameter. As an application, we consider the variational inequality for a one-dimensional analog of the Gol'dshtik model for separated flows of an incompressible fluid.
Keywords: variational inequality, discontinuous nonlinearity, Gol'dshtik's model.
Mots-clés : Sturm–Liouville's problem
@article{SEMR_2023_20_2_a46,
     author = {D. K. Potapov},
     title = {A variational inequality for the {Sturm--Liouville} problem with discontinuous nonlinearity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {981--986},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/}
}
TY  - JOUR
AU  - D. K. Potapov
TI  - A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 981
EP  - 986
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/
LA  - ru
ID  - SEMR_2023_20_2_a46
ER  - 
%0 Journal Article
%A D. K. Potapov
%T A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 981-986
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/
%G ru
%F SEMR_2023_20_2_a46
D. K. Potapov. A variational inequality for the Sturm--Liouville problem with discontinuous nonlinearity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 981-986. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a46/