Flows of quasi-classical trajectories and asymptotics solutions of the Schrödinger equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 773-784 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper analyzes the asymptotics of solutions of the Schrödinger equation with respect to a small parameter $\hbar$. It is well known that short-wave asymptotics for solutions of this equation leads to a pair of equations — the Hamilton–Jacobi equation for the phase and the continuity equation. These equations coincide with the ones for the potential flows of an ideal fluid. The physical meaning of the wave function is invariant with respect to of the complex plane rotations group, and the asymptotics is constructed as a point-dependent action of this group on some function that is found by solving the transfer equation. It is shown that if the Heisenberg group is used instead of the rotation group, then the limit of the Schrödinger equations solutions with $\hbar$ tending to zero, lead to equations for vortex flows of an ideal fluid in a potential field of forces. If the original Schrödinger equation is nonlinear, then equations for barotropic processes in an ideal fluid are obtained.
Mots-clés : Schroödinger equation, Euler equations
Keywords: short-wave asymptotics, quasi-classical approximation, quasi-classical limit.
@article{SEMR_2023_20_2_a43,
     author = {V. V. Khablov},
     title = {Flows of quasi-classical trajectories and asymptotics solutions of the {Schr\"odinger} equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {773--784},
     year = {2023},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a43/}
}
TY  - JOUR
AU  - V. V. Khablov
TI  - Flows of quasi-classical trajectories and asymptotics solutions of the Schrödinger equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 773
EP  - 784
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a43/
LA  - ru
ID  - SEMR_2023_20_2_a43
ER  - 
%0 Journal Article
%A V. V. Khablov
%T Flows of quasi-classical trajectories and asymptotics solutions of the Schrödinger equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 773-784
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a43/
%G ru
%F SEMR_2023_20_2_a43
V. V. Khablov. Flows of quasi-classical trajectories and asymptotics solutions of the Schrödinger equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 773-784. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a43/

[1] C. Godbillon, Differential geometry and analytical mechanics, Hermann, Paris, 1969 | Zbl

[2] V.V. Kozlov, General vortex theory, 2-nd ed., Institut komp`yuterny`x issledovanij, Izhevsk, 2013 ; 1998 | MR | Zbl

[3] A.S. Mishchenko, V.E. Shatalov, B.Yu. Sternin, Lagrangian manifolds and the Maslov operator, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin etc, 1990 | DOI | MR | Zbl

[4] L.D. Landau, E.M. Lifshitz, Quantum mechanics, a shorter course of theoretical physics, Pergamon, 1974 | MR | Zbl

[5] N.E. Kochin,, I.A. Kibel', N.V. Roze, Theoretical hydromechanics, John Wiley Sons, New York etc, 1964 | MR | Zbl

[6] H. Lamb, Hydrodynamics, 6th ed., Cambridge University Press, Cambridge, 1932 | MR | Zbl

[7] J. Serrin, “Mathematical principles of classical fluid mechanics”, Fluid Dynamics I, Strömungsmechanik I, eds. Truesdell C., Springer, Berlin–Heidelberg, 1959 | MR

[8] A.A. Kirillov, “Introduction to the theory of representations and noncommutative harmonic analysis”, Encycl. Math. Sci., 22, 1994, 1–156 | MR | Zbl