Resonance in oscillators with nonlinearity manifested at intermediate amplitudes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 616-625

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper discusses a method for finding self-consistent external influences on a nonlinear oscillator that lead to the phenomenon of resonance as in the linear case. It is shown that for bounded nonlinear systems it is possible to find such a self-consistent external force. To illustrate the search for self-consistent external influences, the simplest system with a nonlinear term represented by the saturation function is chosen. The resonant solution stability with a small amplitude deviation of the obtained self-consistent external force is investigated.
Keywords: Nonlinear resonance, self-consistent source, oscillatory systems with bounded nonlinearity.
@article{SEMR_2023_20_2_a41,
     author = {E. Pelinovsky and I. Melnikov},
     title = {Resonance in oscillators with nonlinearity manifested at intermediate amplitudes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {616--625},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a41/}
}
TY  - JOUR
AU  - E. Pelinovsky
AU  - I. Melnikov
TI  - Resonance in oscillators with nonlinearity manifested at intermediate amplitudes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 616
EP  - 625
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a41/
LA  - en
ID  - SEMR_2023_20_2_a41
ER  - 
%0 Journal Article
%A E. Pelinovsky
%A I. Melnikov
%T Resonance in oscillators with nonlinearity manifested at intermediate amplitudes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 616-625
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a41/
%G en
%F SEMR_2023_20_2_a41
E. Pelinovsky; I. Melnikov. Resonance in oscillators with nonlinearity manifested at intermediate amplitudes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 616-625. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a41/