Resonance in oscillators with nonlinearity manifested at intermediate amplitudes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 616-625.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper discusses a method for finding self-consistent external influences on a nonlinear oscillator that lead to the phenomenon of resonance as in the linear case. It is shown that for bounded nonlinear systems it is possible to find such a self-consistent external force. To illustrate the search for self-consistent external influences, the simplest system with a nonlinear term represented by the saturation function is chosen. The resonant solution stability with a small amplitude deviation of the obtained self-consistent external force is investigated.
Keywords: Nonlinear resonance, self-consistent source, oscillatory systems with bounded nonlinearity.
@article{SEMR_2023_20_2_a41,
     author = {E. Pelinovsky and I. Melnikov},
     title = {Resonance in oscillators with nonlinearity manifested at intermediate amplitudes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {616--625},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a41/}
}
TY  - JOUR
AU  - E. Pelinovsky
AU  - I. Melnikov
TI  - Resonance in oscillators with nonlinearity manifested at intermediate amplitudes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 616
EP  - 625
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a41/
LA  - en
ID  - SEMR_2023_20_2_a41
ER  - 
%0 Journal Article
%A E. Pelinovsky
%A I. Melnikov
%T Resonance in oscillators with nonlinearity manifested at intermediate amplitudes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 616-625
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a41/
%G en
%F SEMR_2023_20_2_a41
E. Pelinovsky; I. Melnikov. Resonance in oscillators with nonlinearity manifested at intermediate amplitudes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 616-625. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a41/

[1] V.I. Veksler, “A new method of acceleration of relativistic particles”, J. Phys. USSR, 9 (1945), 153–158

[2] E.M. McMillan, “The synchrotron - A proposed high energy particle accelerator”, Phys. Rev., 68:5-6 (1945), 143–144 | DOI

[3] A.A. Andronov, A.A. Witt, S.E. Khaykin, Theory of oscillators, Pergamon Press, Oxford etc, 1966 | MR | Zbl

[4] L.D. Landau, E.M. Lifshitz, Mechanics, v. 1, Akademie-Verlag, Berlin, 1976 | MR | Zbl

[5] E. Kartashova, Nonlinear resonance analysis, Cambridge University Press, Cambridge, 2011 | MR | Zbl

[6] S. Rajasekar, M.A.F. Sanjuan, Nonlinear resonances, Springer, 2016 | MR

[7] J. Fajans, L. Friedland, “Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators”, Am. J. Phys., 69 (2001), 1096–1102 | DOI

[8] I. Aranson, B. Meerson, T. Tajima, “Excitation of solitons by an external resonant wave with a slowly varying phase velocity”, Phys. Rev. A, 45:10 (1992), 7500–7510 | DOI

[9] L. Friedland, “Autoresonance in nonlinear systems”, Scholarpedia, 4:1 (2009), 5473 | DOI

[10] L.A. Kalyakin, “Asymptotic analysis of autoresonance models”, Russ. Math. Surv., 63:5 (2008), 791–857 | DOI | MR | Zbl

[11] R.N. Garifullin, L.A. Kalyakin, M.A. Shamsutdinov, “Autoresonance excitation of a breather in weak ferromagnetics”, Comput. Math. Math. Phys., 47:7 (2007), 1158–1170 | DOI | MR

[12] E.M. Maslov, L.A. Kalyakin, A.G. Shagalov, “Breather resonant phase locking by an external perturbation”, Theor. Math. Phys., 152:2 (2007), 1173–1182 | DOI | MR | Zbl

[13] O.M. Kiselev, “Asymptotics of an autoresonance soliton”, Proc. Steklov Inst. Math., 293, Suppl. 1 (2016), S75–S84 | DOI | MR | Zbl

[14] L.A. Kalyakin, “Capture and keyeping of a resonance near equilibrium”, Russ. J. Math. Phys., 26:2 (2019), 152–167 | DOI | MR | Zbl

[15] V.K. Mel'nikov, “Integration of the Korteweg-de Vries equation with a source”, Inverse Probl., 6:2 (1990), 233–246 | DOI | MR | Zbl

[16] Y. Zeng, Y. Shao, W. Xue, “Negaton and positon solutions of the soliton equation with self-consistent sources”, J. Phys. A, Math. Gen., 36:18 (2003), 5035–5043 | DOI | MR | Zbl

[17] O. Chvartatskyi, A. Dimakis, F. Müller-Hoissen, “Self-consistent sources for integrable equations via deformations of binary Darboux”, Let. Math. Phys., 106:8 (2016), 1139–1179 | DOI | MR | Zbl

[18] A.C. Focas, A. Latifi, The nonlinear Schrödinger equation with forcing involving products of eigenfunctions, 2022, arXiv: 2207.07463

[19] F. Calogero, “Isochronous dynamical systems”, Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 369 (2011), 1118–1136 | MR | Zbl

[20] F. Calogero, Isochronous Systems, Oxford Press, Oxford, 2008 | MR | Zbl

[21] J. Parkavi, Ramya et al, “A class of isochronous and non-isochronous nonlinear oscillators”, The European Physical Journal Special Topics, 231 (2022), 2387–2399 | DOI

[22] E.N. Dancer, “On the use of asymptotics in nonlinear boundary value problems”, Ann. Mat. Pura Appl., IV. Ser., 131 (1982), 167–185 | DOI | MR | Zbl

[23] A. Krasnosel'skii, “Resonant forced oscillations in systems with periodic nonlinearities”, Discrete Contin. Dyn. Syst., 33:1 (2013), 239–254 | DOI | MR | Zbl

[24] O. Benediktsson, Forced oscillations in second order systems with bounded nonlinearities, Diss., Rensselaer Polytechnic Institute, August 1965 | MR

[25] B.L. Walcott, S.H. Zak, “Observation of dynamical systems in the presence of bounded nonlinearities/uncertainties”, 25th IEEE Conference on Decision and Control, 1986, 961–966 | MR

[26] P. Mellodge, A practical approach to dynamical systems for engineers, Woodhead Publishing, 2015

[27] N.G. Vakhitov, A.A. Kolokolov, “Stationary solutions of the wave equation in the medium with nonlinearity saturation”, Radiophys. Quantum Electron., 16:7 (1973), 783–789 | DOI

[28] E.N. Pelinovsky, I.E. Melnikov, “Resonance in bounded nonlinear pendulum-type systems”, Zh. Sredn. Mat. Obshch., 24:3 (2022), 289–296 | Zbl