Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a40, author = {K. L. Rychkov}, title = {On the structure of one class of perfect $\Pi$-partitions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1499--1518}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a40/} }
K. L. Rychkov. On the structure of one class of perfect $\Pi$-partitions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1499-1518. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a40/
[1] V.M. Khrapchenko, “On the complexity of the realization of a linear function in the class of $\Pi$-circuits”, Mat. Zametki, 9:1 (1971), 35–40 | MR | Zbl
[2] K.L. Rychkov, “On the lower bounds for the complexity of serial-parallel contact circuits realizing linear Boolean functions”, Discrete analysis and operations research, Mathematics and its Applications, 355, ed. Korshunov A.D., 1996, 217–234 | MR | Zbl
[3] D.Yu. Cherukhin, “To the question of a logical representation for the parity counter”, Neform. Nauka, 2 (2009), 14–23
[4] K.L. Rychkov, “Lower bounds on the formyla complexity of a linear Boolean function”, Sib. Èlektron. Mat. Izv., 11 (2014), 165–184 | MR | Zbl
[5] K.L. Rychkov, “Complexity of the realization of a linear Boolean function in the class of $\pi$-schemes”, J. Appl. Ind. Math., 12:3 (2018), 540–576 | DOI | MR | Zbl
[6] S.V. Yablonskii, “Realization of a linear function in the class of $\pi$-schemes”, Dokl. Akad. Nauk SSSR, Nov. Ser., 94:5 (1954), 805–806 | MR | Zbl
[7] K.L. Rychkov, “On minimal $\pi$-schemes for linear Boolean functions”, Metody Diskretn. Anal., 51 (1991), 84–104 | MR | Zbl
[8] K.L. Rychkov, “Sufficient conditions for the local repetition-freeness of minimal $\pi$-schemes realizing linear Boolean functions”, J. Appl. Ind. Math., 9:4 (2015), 580–587 | DOI | MR | Zbl
[9] K.L. Rychkov, “On the perfectness of minimal regular partitions of the edge set of the n-dimensional cube”, Diskretn. Anal. Issled. Oper., 26:4 (2019), 74–107 | DOI | MR | Zbl
[10] V.M. Khrapchenko, “On a method of determining lower bounds for the complexity of $\Pi$-schemes”, Mat. Zametki, 10:1 (1971), 83–92 | MR | Zbl
[11] V.M. Khrapchenko, “A simplified proof of a lower complexity estimate”, Discrete Math. Appl., 23:2 (2013), 171–174 | DOI | MR | Zbl
[12] K.L. Rychkov, “Representations of normalized formulas”, Diskretn. Anal. Issled. Oper., 29:4 (2022), 77–103 | DOI | MR | Zbl