On the structure of one class of perfect $\Pi$-partitions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1499-1518

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of $\Pi$-partition is an analogue of the concept of normalized formula (a formula in the basis $\{\vee,\wedge,^-\}$ in which negations are possible only over variables) and concept of $\Pi$-schema, just as these last two concepts are analogues of each other. At its core, a $\Pi$-partition is a kind of "imprint" of a formula in the Boolean function calculated by this formula and is considered as a representation of this formula. In order to describe the class of minimal normalized formulas that calculate linear Boolean functions, the structure of the $\Pi$-partitions representing these formulas has been clarified.
Keywords: boolean functions, $\pi$-schemes, normalized formulas, lower bounds on the complexity, formula representation.
@article{SEMR_2023_20_2_a40,
     author = {K. L. Rychkov},
     title = {On the structure of one class of perfect $\Pi$-partitions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1499--1518},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a40/}
}
TY  - JOUR
AU  - K. L. Rychkov
TI  - On the structure of one class of perfect $\Pi$-partitions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1499
EP  - 1518
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a40/
LA  - ru
ID  - SEMR_2023_20_2_a40
ER  - 
%0 Journal Article
%A K. L. Rychkov
%T On the structure of one class of perfect $\Pi$-partitions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1499-1518
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a40/
%G ru
%F SEMR_2023_20_2_a40
K. L. Rychkov. On the structure of one class of perfect $\Pi$-partitions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1499-1518. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a40/