Finite groups with formational subnormal primary subgroups of bounded exponent
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 785-796.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{U}_k$ be the class of all supersoluble groups in which exponents are not divided by the $(k+1)$-th powers of primes. We investigate the classes $\mathrm{w}\mathfrak{U}_k$ and $\mathrm{v}\mathfrak{U}_k$ that contain all finite groups in which every Sylow and, respectively, every cyclic primary subgroup is $\mathfrak{U}_k$-subnormal. We prove that $\mathrm{w}\mathfrak{U}_k$ and $\mathrm{v}\mathfrak{U}_k$ are subgroup-closed saturated formations and obtain the characterizations of these formations.
Keywords: finite group, primary subgroup, subnormal subgroup.
@article{SEMR_2023_20_2_a4,
     author = {V. S. Monakhov and I. L. Sokhor},
     title = {Finite groups with formational subnormal primary subgroups of bounded exponent},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {785--796},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - I. L. Sokhor
TI  - Finite groups with formational subnormal primary subgroups of bounded exponent
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 785
EP  - 796
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/
LA  - en
ID  - SEMR_2023_20_2_a4
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A I. L. Sokhor
%T Finite groups with formational subnormal primary subgroups of bounded exponent
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 785-796
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/
%G en
%F SEMR_2023_20_2_a4
V. S. Monakhov; I. L. Sokhor. Finite groups with formational subnormal primary subgroups of bounded exponent. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 785-796. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/

[1] A. Ballester-Bolinches, L.M. Ezquerro, Classes of finite groups, Springer, Dordrecht, 2006 | MR | Zbl

[2] V.S. Monakhov, I.L. Sokhor, “On groups with formational subnormal Sylow subgroups”, J. Group Theory, 21:2 (2018), 273–287 | DOI | MR | Zbl

[3] A.F. Vasil'ev, T.I. Vasil'eva, V.N. Tyutyanov, “On the finite groups of supersoluble type”, Sib. Math. J., 51:6 (2010), 1004–1012 | DOI | MR | Zbl

[4] V.S. Monakhov, V.N. Kniahina, “Finite groups with $\mathbb P$-subnormal subgroups”, Ric. Mat., 62:2 (2013), 307–323 | DOI | MR | Zbl

[5] V.N. Kniahina, V.S. Monakhov, “On supersolvability of finite groups with $\mathbb{P}$-subnormal subgroups”, Int. J. Group Theory, 2:4 (2013), 21–29 | MR | Zbl

[6] V.S. Monakhov, “Finite groups with abnormal and $\mathfrak{U}$-subnormal subgroups”, Sib. Math. J., 57:2 (2016), 352–363 | DOI | MR | Zbl

[7] V.I. Murashka, “Classes of finite groups with generalized subnormal cyclic primary subgroups”, Sib. Math. J., 55:6 (2014), 1105–1115 | DOI | MR | Zbl

[8] V.S. Monakhov, I.L. Sokhor, “Finite groups with formation subnormal primary subgroups”, Sib. Math. J., 58:4 (2017), 663–671 | DOI | MR | Zbl

[9] V.S. Monakhov, “Three formations over $\mathfrak{U}$”, Math. Notes, 110:3 (2021), 339–346 | DOI | MR | Zbl

[10] A.F. Vasil'ev, T.I. Vasil'eva, A.S. Vegera, “Finite groups with generalized subnormal embedding of Sylow subgroups”, Sib. Math. J., 57:2 (2016), 200–212 | DOI | MR | Zbl

[11] I.M. Isaacs, Finite group theory, AMS, Providence, 2008 | MR | Zbl

[12] D.M. Bloom, “The subgroups of $PSL(3,q)$ for odd $q$”, Trans. Am. Math. Soc., 127 (1967), 150–178 | MR | Zbl

[13] A. Ballester-Bolinches, R. Esteban-Romero, “On minimal non-supersoluble groups”, Rev. Mat. Iberoam., 23:1 (2007), 127–142 | DOI | MR | Zbl