Finite groups with formational subnormal primary subgroups of bounded exponent
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 785-796

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{U}_k$ be the class of all supersoluble groups in which exponents are not divided by the $(k+1)$-th powers of primes. We investigate the classes $\mathrm{w}\mathfrak{U}_k$ and $\mathrm{v}\mathfrak{U}_k$ that contain all finite groups in which every Sylow and, respectively, every cyclic primary subgroup is $\mathfrak{U}_k$-subnormal. We prove that $\mathrm{w}\mathfrak{U}_k$ and $\mathrm{v}\mathfrak{U}_k$ are subgroup-closed saturated formations and obtain the characterizations of these formations.
Keywords: finite group, primary subgroup, subnormal subgroup.
@article{SEMR_2023_20_2_a4,
     author = {V. S. Monakhov and I. L. Sokhor},
     title = {Finite groups with formational subnormal primary subgroups of bounded exponent},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {785--796},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - I. L. Sokhor
TI  - Finite groups with formational subnormal primary subgroups of bounded exponent
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 785
EP  - 796
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/
LA  - en
ID  - SEMR_2023_20_2_a4
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A I. L. Sokhor
%T Finite groups with formational subnormal primary subgroups of bounded exponent
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 785-796
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/
%G en
%F SEMR_2023_20_2_a4
V. S. Monakhov; I. L. Sokhor. Finite groups with formational subnormal primary subgroups of bounded exponent. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 785-796. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/