Finite groups with formational subnormal primary subgroups of bounded exponent
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 785-796
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak{U}_k$ be the class of all supersoluble groups in which exponents are not divided by the $(k+1)$-th powers of primes. We investigate the classes $\mathrm{w}\mathfrak{U}_k$ and $\mathrm{v}\mathfrak{U}_k$ that contain all finite groups in which every Sylow and, respectively, every cyclic primary subgroup is $\mathfrak{U}_k$-subnormal. We prove that $\mathrm{w}\mathfrak{U}_k$ and $\mathrm{v}\mathfrak{U}_k$ are subgroup-closed saturated formations and obtain the characterizations of these formations.
Keywords:
finite group, primary subgroup, subnormal subgroup.
@article{SEMR_2023_20_2_a4,
author = {V. S. Monakhov and I. L. Sokhor},
title = {Finite groups with formational subnormal primary subgroups of bounded exponent},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {785--796},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/}
}
TY - JOUR AU - V. S. Monakhov AU - I. L. Sokhor TI - Finite groups with formational subnormal primary subgroups of bounded exponent JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 785 EP - 796 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/ LA - en ID - SEMR_2023_20_2_a4 ER -
%0 Journal Article %A V. S. Monakhov %A I. L. Sokhor %T Finite groups with formational subnormal primary subgroups of bounded exponent %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 785-796 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/ %G en %F SEMR_2023_20_2_a4
V. S. Monakhov; I. L. Sokhor. Finite groups with formational subnormal primary subgroups of bounded exponent. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 785-796. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a4/