Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a39, author = {A. Valyuzhenich}, title = {On reduction for eigenfunctions of graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1290--1294}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a39/} }
A. Valyuzhenich. On reduction for eigenfunctions of graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1290-1294. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a39/
[1] R. J. Evans, A. L. Gavrilyuk, S. Goryainov, K. Vorob'ev, Equitable $2$-partitions of the Johnson graphs $J(n,3)$, 2022, arXiv: 2206.15341 | DOI
[2] I. Mogilnykh, A. Valyuzhenich, “Equitable $2$-partitions of the Hamming graphs with the second eigenvalue”, Discrete Math., 343:11 (2020), 112039 | DOI | MR | Zbl
[3] A. Valyuzhenich, “Minimum supports of eigenfunctions of Hamming graphs”, Discrete Math., 340:5 (2017), 1064–1068 | DOI | MR | Zbl
[4] A. Valyuzhenich, K. Vorob'ev, “Minimum supports of functions on the Hamming graphs with spectral constraints”, Discrete Math., 342:5 (2019), 1351–1360 | DOI | MR | Zbl
[5] A. Valyuzhenich, “Eigenfunctions and minimum $1$-perfect bitrades in the Hamming graph”, Discrete Math., 344:3 (2021), 112228 | DOI | MR | Zbl
[6] K. Vorob'ev, I. Mogilnykh, A. Valyuzhenich, “Minimum supports of eigenfunctions of Johnson graphs”, Discrete Math., 341:8 (2018), 2151–2158 | DOI | MR | Zbl
[7] K. Vorob'ev, Equitable $2$-partitions of Johnson graphs with the second eigenvalue, March 2020, arXiv: 2003.10956 | DOI
[8] K. Vorob'ev, “On reconstruction of eigenfunctions of Johnson graphs”, Discrete Appl. Math., 276 (2020), 166–171 | DOI | MR | Zbl