On reduction for eigenfunctions of graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1290-1294.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we prove a general version of the reduction lemmas for eigenfunctions of graphs admitting involutive automorphisms of a special type.
Keywords: eigenfunctions of graphs, involutive automorphism.
@article{SEMR_2023_20_2_a39,
     author = {A. Valyuzhenich},
     title = {On reduction for eigenfunctions of graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1290--1294},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a39/}
}
TY  - JOUR
AU  - A. Valyuzhenich
TI  - On reduction for eigenfunctions of graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1290
EP  - 1294
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a39/
LA  - en
ID  - SEMR_2023_20_2_a39
ER  - 
%0 Journal Article
%A A. Valyuzhenich
%T On reduction for eigenfunctions of graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1290-1294
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a39/
%G en
%F SEMR_2023_20_2_a39
A. Valyuzhenich. On reduction for eigenfunctions of graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1290-1294. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a39/

[1] R. J. Evans, A. L. Gavrilyuk, S. Goryainov, K. Vorob'ev, Equitable $2$-partitions of the Johnson graphs $J(n,3)$, 2022, arXiv: 2206.15341 | DOI

[2] I. Mogilnykh, A. Valyuzhenich, “Equitable $2$-partitions of the Hamming graphs with the second eigenvalue”, Discrete Math., 343:11 (2020), 112039 | DOI | MR | Zbl

[3] A. Valyuzhenich, “Minimum supports of eigenfunctions of Hamming graphs”, Discrete Math., 340:5 (2017), 1064–1068 | DOI | MR | Zbl

[4] A. Valyuzhenich, K. Vorob'ev, “Minimum supports of functions on the Hamming graphs with spectral constraints”, Discrete Math., 342:5 (2019), 1351–1360 | DOI | MR | Zbl

[5] A. Valyuzhenich, “Eigenfunctions and minimum $1$-perfect bitrades in the Hamming graph”, Discrete Math., 344:3 (2021), 112228 | DOI | MR | Zbl

[6] K. Vorob'ev, I. Mogilnykh, A. Valyuzhenich, “Minimum supports of eigenfunctions of Johnson graphs”, Discrete Math., 341:8 (2018), 2151–2158 | DOI | MR | Zbl

[7] K. Vorob'ev, Equitable $2$-partitions of Johnson graphs with the second eigenvalue, March 2020, arXiv: 2003.10956 | DOI

[8] K. Vorob'ev, “On reconstruction of eigenfunctions of Johnson graphs”, Discrete Appl. Math., 276 (2020), 166–171 | DOI | MR | Zbl