$L_{\infty}$ norm minimization for nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and Johnson graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1125-1149.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and the Johnson graphs. For the first eigenvalue we obtain the minimums of the $L_{\infty}$ norm for several infinite series of Johnson graphs, including $J(n,3)$ for all $n\geq 63$, as well as general upper and lower bounds. The minimization of the $L_{\infty}$ norm for nowhere-zero integer eigenvectors with the second eigenvalue of the block graph of a Steiner triple system $S$ is equivalent to finding the minimum nowhere-zero flow for Steiner triple system $S$. For the all Assmuss-Mattson Steiner triple systems of the orders greater or equal to $99$ we prove that the minimum flow is bounded above by $5$.
Keywords: Steiner triple system, flow, strongly regular graph, Johnson graph, Grassmann graph, eigenvalue.
@article{SEMR_2023_20_2_a38,
     author = {E. A. Bespalov and I. Yu. Mogilnykh and K. V. Vorob'ev},
     title = {$L_{\infty}$ norm minimization for nowhere-zero integer eigenvectors of the block graphs of {Steiner} triple systems and {Johnson} graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1125--1149},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a38/}
}
TY  - JOUR
AU  - E. A. Bespalov
AU  - I. Yu. Mogilnykh
AU  - K. V. Vorob'ev
TI  - $L_{\infty}$ norm minimization for nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and Johnson graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1125
EP  - 1149
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a38/
LA  - en
ID  - SEMR_2023_20_2_a38
ER  - 
%0 Journal Article
%A E. A. Bespalov
%A I. Yu. Mogilnykh
%A K. V. Vorob'ev
%T $L_{\infty}$ norm minimization for nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and Johnson graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1125-1149
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a38/
%G en
%F SEMR_2023_20_2_a38
E. A. Bespalov; I. Yu. Mogilnykh; K. V. Vorob'ev. $L_{\infty}$ norm minimization for nowhere-zero integer eigenvectors of the block graphs of Steiner triple systems and Johnson graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1125-1149. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a38/

[1] S. Akbari, G.B. Khosrovshahi, A. Mofidi, “Zero-sum flows in designs”, J. Comb. Des., 19:5 (2011), 355–364 | DOI | MR | Zbl

[2] S. Akbari, E. Ghorbani, A. Mahmoodi, “Nowhere-zero eigenvectors of graphs”, Linear Multilinear Algebra, 61:2 (2013), 273–279 | DOI | MR | Zbl

[3] S. Akbari, A.C. Burgess, P. Danziger, E. Mendelsohn, “Zero-sum flows for triple systems”, Discrete Math, 340:3 (2017), 416–425 | DOI | MR | Zbl

[4] S. Akbari, H.R. Maimani, L. Parsaei Majd, I.M. Wanless, “Zero-sum flows for Steiner systems”, Discrete Math., 343:11 (2020), 112074 | DOI | MR | Zbl

[5] I.Sh.o. Aliev, E. Seiden, “Steiner triple systems and strongly regular graphs”, J. Comb. Theory, 6:1 (1969), 33–39 | DOI | MR | Zbl

[6] E.F.jun. Assmuss, H.F. Mattson, “On the number of inequivalent Steiner triple systems”, J. Comb. Theory, 1:3 (1966), 301–305 | DOI | MR | Zbl

[7] S.V. Avgustinovich, I.Yu. Mogilnykh, “Induced perfect colorings”, Sib. Èlectron. Mat. Izv., 8 (2011), 310–316 | MR | Zbl

[8] R.D. Baker, “Partitioning the planes of $AG_{2m}(2)$ into 2-designs”, Discrete Math., 15 (1976), 205–211 | DOI | MR | Zbl

[9] M. Braun, T. Etzion, P.R.J. Östergard, A. Vardy, A. Wassermann, “Existence of q-analogs of Steiner systems”, Forum Math. Pi, 4 (2016), e7 | DOI | MR | Zbl

[10] P.J. Cameron, R.A. Liebler, “Tactical decompositions and orbits of projective groups”, Linear Algebra Appl., 46 (1982), 91–102 | DOI | MR | Zbl

[11] C. Colbourn, D. Lusi, “Constructing resolutions for an infinite family of Bose triple system”, Abstracts of Southeastern International Conference on Combinatorics, Graph Theory and Computing (March 8-12, 2021) http://www.math.fau.edu/combinatorics2021/lusid020921.pdf

[12] F.N. Cole, L.D. Cummings, H.S. White, “The complete enumeration of triad systems in 15 elements”, Nat. Acad. Proc., 3 (1916), 197–199 | DOI | Zbl

[13] J. D'haeseleer, F. Ihringer, J. Mannaert, L. Storme, “Cameron-Liebler k-sets in AG(n,q)”, Electron. J. Comb., 28:4 (2021), P4.11 | MR | Zbl

[14] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 10, Historical Jrl., Ann Arbor, 1973 | MR | Zbl

[15] J. Doyen, X. Hubaut, M. Vandensavel, “Ranks of incidence matrices of Steiner triple systems”, Math. Z., 163 (1978), 251–259 | DOI | MR | Zbl

[16] K. Drudge, Extremal sets in projective and polar spaces, Ph. D. Thesis, University of Western Ontario, 1998 | MR

[17] Y. Filmus, F. Ihringer, “Boolean degree 1 functions on some classic association schemes”, J. Comb. Theory, Ser. A, 162 (2019), 241–270 | DOI | MR | Zbl

[18] S. Goryainov, D. Panasenko, “On eigenfunctions of block graphs of Steiner systems based on AG(n,3)”, The abstracts of 7th Algebraic Graph Theory and its Applications, 2022, 17

[19] P. Keevash, A. Sah, M. Sawhney, The existence of subspace designs, 2023, arXiv: 2212.00870

[20] C. Maldonado, D. Penazzi, Lattices and Norton algebras of Johnson, Grassmann and Hamming graphs, 2012, arXiv: 1204.1947 | MR

[21] I.Yu. Mogilnykh, “Completely regular codes in Johnson and Grassmann graphs with small covering radii”, Electron. J. Comb., 29:2 (2022), P2.57 | MR | Zbl

[22] I.Yu. Mogilnykh, K.V. Vorob'ev, “On completely regular codes with minimum eigenvalue in geometric graphs”, Discrete Math., 346:7 (2023), 113357 | DOI | MR | Zbl

[23] G. Sarkis, S. Shahriari, PCURC, “Zero-sum flows of the linear lattice”, Finite Fields Appl., 31 (2015), 108–120 | DOI | MR | Zbl

[24] W.T. Tutte, “A contribution to the theory of chromatic polynomials”, Can. J. Math., 6 (1954), 80–91 | DOI | MR | Zbl

[25] K.V. Vorob'ev, “Embedding of eigenfunctions of the Johnson graph into eigenfunctions of the Hamming graph”, J. Appl. Ind. Math., 8:1 (2014), 136–142 | DOI | MR | Zbl