Approximation algorithms for 2-PSP-2W-max and 2-CC-2W-max
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 923-941

Voir la notice de l'article provenant de la source Math-Net.Ru

We present new polynomial approximation algorithms for the $2$-Perpatetic Salesman Problem and the $2$-Cycle Cover Problem. The $m$-Perpatetic Salesman Problem ($m$-PSP) is a generalization of the classical Traveling Salesman Problem. In the $m$-PSP, we need to find $m$ edge disjoint Hamiltonian cycles of the extremal total weight in a complete weighted graph $G=(V,E)$. In the $m$-Cycle Cover Problem ($m$-CC), we need to find $m$ edge disjoint cycle covers of the extremal weight in $G$. Many exact and approximation algorithms were proposed for the case of $m$-PSP where we are given only one weight function $w:E \rightarrow R^+$ and the weight of $m$ Hamiltonian cycles $H_1,H_2,\ldots,H_m$ is defined as $w(H_1)+ \ldots +w(H_m)$. However, not so many results are known for the case when we are given $m$ distinct weight functions $w_1,w_2,\ldots,w_m$ and the weight of $H_1,H_2,\ldots,H_m$ is defined as $w_1(H_1)+w_2(H_2)+\ldots +w_m(H_m)$ (the $m$-PSP-$m$W problem). Here we present a series of polynomial algorithms with approximation ratios $1/2$ and higher for the $2$-PSP-max-2W. As a supporting result, we produce a polynomial algorithm with the asymptotic ratio $\frac 23$ for the $2$-CC-max-$2W$ problem.
Keywords: Traveling Salesman Problem, $2$-Perpatetic Salesman Problem, Cycle Cover Problem, approximation algorithm, guaranteed approximation ratio, weight function.
@article{SEMR_2023_20_2_a35,
     author = {A. N. Glebov and S. S. Lylova and S. G. Toktokhoeva},
     title = {Approximation algorithms for {2-PSP-2W-max} and {2-CC-2W-max}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {923--941},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a35/}
}
TY  - JOUR
AU  - A. N. Glebov
AU  - S. S. Lylova
AU  - S. G. Toktokhoeva
TI  - Approximation algorithms for 2-PSP-2W-max and 2-CC-2W-max
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 923
EP  - 941
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a35/
LA  - ru
ID  - SEMR_2023_20_2_a35
ER  - 
%0 Journal Article
%A A. N. Glebov
%A S. S. Lylova
%A S. G. Toktokhoeva
%T Approximation algorithms for 2-PSP-2W-max and 2-CC-2W-max
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 923-941
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a35/
%G ru
%F SEMR_2023_20_2_a35
A. N. Glebov; S. S. Lylova; S. G. Toktokhoeva. Approximation algorithms for 2-PSP-2W-max and 2-CC-2W-max. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 923-941. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a35/