Feynman checkers with absorption
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 626-637.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a new elementary proof of the theorem by Ambainis et al. that for a quantum walk, the probability amplitudes of absorption at the initial point after 4n steps are proportional to the Catalan numbers. We also calculate the absorption probabilities at points close to the initial one and prove a relation that connects the probability amplitudes along the diagonal.
Keywords: Feynman checkers, quantum walks, Catalan numbers, reflection method.
@article{SEMR_2023_20_2_a32,
     author = {M. D. Dmitriev},
     title = {Feynman checkers with absorption},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {626--637},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a32/}
}
TY  - JOUR
AU  - M. D. Dmitriev
TI  - Feynman checkers with absorption
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 626
EP  - 637
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a32/
LA  - ru
ID  - SEMR_2023_20_2_a32
ER  - 
%0 Journal Article
%A M. D. Dmitriev
%T Feynman checkers with absorption
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 626-637
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a32/
%G ru
%F SEMR_2023_20_2_a32
M. D. Dmitriev. Feynman checkers with absorption. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 626-637. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a32/

[1] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, J. Watrous, “One-dimensional quantum walks”, Proc. of the 33rd Annual ACM Symposium on Theory of Computing, STOC 2001, ACM Press, New York, 2001, 37–49 | DOI | MR | Zbl

[2] R.P. Feynman, A.R. Hibbs, Quantum mechanics and path integrals, McGraw-Hill, Maidenhead, Berksh, 1965 | MR | Zbl

[3] J. Kempe, “Quantum random walks: an introductory overview”, Contemp. Phys., 50:1 (2009), 339–359 | DOI

[4] F. Kuyanov, A. Slizkov, “Feynman checkers: number-theoretic properties”, Rev. Math. Phys., 2350022 | DOI | MR

[5] C. Liu, N. Petulante, “Weak limits for quantum walks on the half-line”, Int. J. Quantum Inf., 11:6 (2013), 1350054 | DOI | MR | Zbl

[6] I. Novikov, “Feynman checkers: the probability to find an electron vanishes nowhere inside the light cone”, Rev. Math. Phys., 34:7 (2022), 2250020 | DOI | MR | Zbl

[7] F. Ozhegov, Feynman checkers: external electromagnetic field and asymptotic properties, 2022, arXiv: 2209.00938 | Zbl

[8] M. Skopenkov, A. Pakharev, A. Ustinov, “Through the resisting net”, Mat. Prosv. 3rd ser., 18, 2014, 33–65

[9] M. Skopenkov, A. Ustinov, Feynman checkers: Minkowskian lattice quantum field theory, 2022, arXiv: 2208.14247 | MR

[10] M. Skopenkov, A. Ustinov, “Feynman checkers: towards algorithmic quantum theory”, Russian Math. Surveys, 77:3(465) (2022), 73–160 | DOI | MR | Zbl

[11] S.E. Venegas-Andraca, “Quantum walks: a comprehensive review”, Quantum Inf. Process., 11:5 (2012), 1015–1106 | DOI | MR | Zbl