Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a31, author = {M. T. K. Abbassi and R. El Masdouri and I. Lakrini}, title = {Complex and symplectic geometry of vector bundle manifolds}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1295--1312}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a31/} }
TY - JOUR AU - M. T. K. Abbassi AU - R. El Masdouri AU - I. Lakrini TI - Complex and symplectic geometry of vector bundle manifolds JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1295 EP - 1312 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a31/ LA - en ID - SEMR_2023_20_2_a31 ER -
%0 Journal Article %A M. T. K. Abbassi %A R. El Masdouri %A I. Lakrini %T Complex and symplectic geometry of vector bundle manifolds %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 1295-1312 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a31/ %G en %F SEMR_2023_20_2_a31
M. T. K. Abbassi; R. El Masdouri; I. Lakrini. Complex and symplectic geometry of vector bundle manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1295-1312. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a31/
[1] M.T.K. Abbassi, “$g$-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds”, Note. Mat., 28, suppl. 1 (2009), 6–35 | MR | Zbl
[2] M.T.K. Abbassi, Métriques Naturelles Riemanniennes sur le Fibrùé tangent à une variété Riemannienne, Editions Universitaires Européénnes, Saarbrücken, Germany, 2012
[3] M.T.K. Abbassi, M. Sarih, “On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds”, Differ. Geom. Appl., 22:1 (2005), 19–47 | DOI | MR | Zbl
[4] M.T.K Abbassi, I. Lakrini, “On the geometry of vector bundles with flat connections”, Bull. Korean Math. Soc., 56:5 (2019), 1219–1233 | MR | Zbl
[5] M.T.K Abbassi, I. Lakrini, “On the completeness of total space of horizontally conformal submersions”, Commun. Math., 29:3 (2021), 493–504 | DOI | MR | Zbl
[6] M.T.K Abbassi, I. Lakrini, “Conformal vector fields on vector bundle manifolds with spherically symmetric metrics”, Publ. Math. Debr., 97:3-4 (2020), 289–311 | DOI | MR | Zbl
[7] R.M. Aguilar, “Isotropic almost complex structures on tangent bundles”, Manuscr. Math., 90:4 (1996), 429–436 | DOI | MR | Zbl
[8] R. Albuquerque, “On vector bundle manifolds with spherically symmetric metrics”, Ann. Global Anal. Geom., 51:2 (2017), 129–154 | DOI | MR | Zbl
[9] V.I. Arnold, Mathematical methods of classical mechanics, Springer, New York etc, 1978 | MR | Zbl
[10] L. Auslander, M. Kuranishi, “On the holonomy group of locally Euclidean spaces”, Ann. Math. (2), 65:3 (1957), 441–415 | DOI | MR | Zbl
[11] A. Baghban, E. Abedi, “Isotropic almost complex structures and harmonic unit vector fields”, Arch. Math. Brno, 54:1 (2018), 15–32 | DOI | MR | Zbl
[12] M. Benyounes, E. Loubeau, C.M. Wood, “Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type”, Differ. Geom. Appl., 25:3 (2007), 322–334 | DOI | MR | Zbl
[13] L.S. Charlap, “Compact flat Riemannian manifolds I”, Ann. Math. (2), 81:1 (1965), 15–30 | DOI | MR | Zbl
[14] L.S. Charlap, A.T. Vasquez, “Compact flat Riemannian manifolds II: The cohomology of $Z_p$-manifolds”, Am. J. Math., 87:3 (1965), 551–563 | DOI | MR | Zbl
[15] L.S. Charlap, A.T. Alphonse, “Compact flat Riemannian manifolds. III: The group of affinities”, Am. J. Math., 95:3 (1973), 471–494 | DOI | MR | Zbl
[16] L.S. Charlap, Bieberbach groups and flat manifolds, Springer-Verlag, New York etc, 1986 | MR | Zbl
[17] K. Dekimpe, M. Hałenda, A. Szczepański, “Kähler flat manifolds”, J. Math. Soc. Japan, 61:2 (2009), 363–377 | DOI | MR | Zbl
[18] P. Dombrowski, “On the geometry of the tangent bundles”, J. Reine Angew. Math., 210 (1962), 73–88 | DOI | MR | Zbl
[19] S. Dragomir, D. Perrone, Harmonic vector fields. Variational principles and differential geometry, Elsevier, Amsterdam, 2012 | MR | Zbl
[20] S.I. Goldberg, Curvature and homology, Academic Press, New York, London, 1962 | MR | Zbl
[21] F.E.A. Johnson, E.G. Rees, “Kähler groups and rigidity phenomena”, Math. Proc. Camb. Philos. Soc., 109:1 (1991), 31–44 | DOI | MR | Zbl
[22] J.J. Konderak, “On sections of fibre bundles which are harmonic maps”, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér., 42(90):4 (1999), 341–352 | MR
[23] O. Kowalski, “Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold”, J. Reine Angew. Math., 250 (1971), 124–129 | MR | Zbl
[24] O. Kowalski, M. Sekizawa, “Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification”, Bull. Tokyo Gakugei Univ., Sect. IV, Ser. Math. Nat. Sci., 40 (1988), 1–29 | MR | Zbl
[25] I. Kolář , P.W. Michor, J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR | Zbl
[26] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. II, Interscince Publishers, New York-London-Sydney, 1963 | MR | Zbl
[27] A. Lichnerowicz, “Généralizations de la géométrie Kählerienne globale”, Colloque de Géométrie Différentielle (Louvin, 1951) | MR
[28] K-P. Mok, “Metrics and connections on the cotangent bundle”, Kōdai Math. Semin. Rep., 28 (1977), 226–238 | MR | Zbl
[29] E. Musso, F. Tricerri, “Riemannian metrics on tangent bundles”, Ann. Mat. Pura Appl., IV. Ser., 150:4 (1988), 1–19 | MR | Zbl
[30] M.I. Munteanu, “Old and new structures on the tangent bundle”, Proceedings of the 8th international conference on geometry, integrability and quantization (Sts. Constantine and Elena, Bulgaria, June 9-14, 2006), eds. Mladenov Ivaïlo et al., Bulgarian Academy of Sciences, Sofia, 2007, 264–278 | MR | Zbl
[31] V. Oproiu, “A generalization of natural almost Hermitian structures on the tangent bundle”, Math. J. Toyama Univ., 22 (1999), 1–14 | MR | Zbl
[32] W.A. Poor, Differential geometric structures, Dover Pubs. Inc., Mineola, New York, 2007; 1981 | Zbl
[33] A.A. Salimov, F. Agca, “Some properties of Sasakian metrics in cotangent bundles”, Mediterr. J. Math., 8:2 (2011), 243–255 | DOI | MR | Zbl
[34] S. Sasaki, “On the differential geometry of tangent bundles of Riemannian manifolds”, Tôhoku Math. J., II. Ser., 10 (1958), 338–354 | MR | Zbl
[35] M. Sekizawa, “Natural transformations of affine connections on manifolds to metrics on cotangent bundles”, Abstract analysis, Proc. 14th Winter Sch. (Srno/Czech, 1986), Suppl. Rend. Circ. Mat. Palermo, II. Ser., 14, 1987, 129–142 | MR | Zbl
[36] M. Tahara, L. Vanhecke, Y. Watanabe, “New structures on tangent bundles”, Note Mat., 18:1 (1998), 131–141 | MR | Zbl
[37] K. Yano, S. Ishihara, Tangent and cotangent bundles. Differential geometry, Marcel Dekker Inc., New York, 1973 | MR | Zbl
[38] S.-T. Yau, “Compact flat Riemannian manifolds”, J. Differ. Geom., 6 (1972), 395–402 | DOI | MR | Zbl