Complex and symplectic geometry of vector bundle manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1295-1312

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to explore the complex and symplectic geometries of vector bundle manifolds. We will construct an almost complex structure on total spaces of vector bundles, endowed with a complex structure, over an almost complex base. Then we give necessary and sufficient conditions for its integrability. Meanwhile, we accomplish a symplectic version of this construction. We construct almost symplectic structures on vector bundle manifolds and we characterize those which are symplectic on the total space. Finally, we apply the constructions to the case of tangent bundles and Whitney sums. In particular, we obtain an infinite family of non-compact flat Kähler manifolds.
Keywords: (almost) complex structure, symplectic structure, Kähler manifold, vector bundle, spherically symmetric metric.
@article{SEMR_2023_20_2_a31,
     author = {M. T. K. Abbassi and R. El Masdouri and I. Lakrini},
     title = {Complex and symplectic geometry of vector bundle manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1295--1312},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a31/}
}
TY  - JOUR
AU  - M. T. K. Abbassi
AU  - R. El Masdouri
AU  - I. Lakrini
TI  - Complex and symplectic geometry of vector bundle manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1295
EP  - 1312
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a31/
LA  - en
ID  - SEMR_2023_20_2_a31
ER  - 
%0 Journal Article
%A M. T. K. Abbassi
%A R. El Masdouri
%A I. Lakrini
%T Complex and symplectic geometry of vector bundle manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1295-1312
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a31/
%G en
%F SEMR_2023_20_2_a31
M. T. K. Abbassi; R. El Masdouri; I. Lakrini. Complex and symplectic geometry of vector bundle manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1295-1312. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a31/