\large Equationally Noetherian varieties of semigroups and B.~Plotkin's problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 724-734
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider systems of semigroup equations with constants. A semigroup $S$ is called equationally Noetherian if any system of equations is equivalent over $S$ to a finite subsystem. In the current paper we describe all semigroup varieties that consist of equationally Noetherian semigroups. Our result solves the problem of B.Plotkin for semigroup varieties.
Keywords:
semigroups, varieties, universal algebraic geometry.
@article{SEMR_2023_20_2_a3,
author = {A. N. Shevlyakov},
title = {\large {Equationally} {Noetherian} varieties of semigroups and {B.~Plotkin's} problem},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {724--734},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a3/}
}
TY - JOUR AU - A. N. Shevlyakov TI - \large Equationally Noetherian varieties of semigroups and B.~Plotkin's problem JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 724 EP - 734 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a3/ LA - en ID - SEMR_2023_20_2_a3 ER -
A. N. Shevlyakov. \large Equationally Noetherian varieties of semigroups and B.~Plotkin's problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 724-734. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a3/