@article{SEMR_2023_20_2_a3,
author = {A. N. Shevlyakov},
title = {Equationally {Noetherian} varieties of semigroups and {B.~Plotkin's} problem},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {724--734},
year = {2023},
volume = {20},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a3/}
}
A. N. Shevlyakov. Equationally Noetherian varieties of semigroups and B. Plotkin's problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 724-734. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a3/
[1] A.H. Clifford, G.B. Preston, The The algebraic theory of semigroups, v. I, AMS, Providence, 1961 | MR | Zbl
[2] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, II: Fundations”, J. Math. Sci., New York, 185:3 (2012), 389–416 | DOI | MR | Zbl
[3] T. Harju, J. Karhumäki, W. Plandowski, “Compactness of systems of equations in semigroups”, Automata, languages and programming, 22nd international colloquium, ICALP '95, Proceedings (Szeged, Hungary, July 10-14, 1995), LNCS, 944, eds. Fülöp Zoltán et al., Springer, Berlin, 1995, 444–454 | DOI | MR | Zbl
[4] T. Harju, J. Karhumäki, M. Petrich, “Compactness of systems of equations on completely regular semigroups”, Structures in logic and computer science, A selection of essays in honor of Andrzej Ehrenfeucht, LNCS, 1261, eds. Mycielski Jan et al.,, Springer, Berlin, 1997, 268–280 | DOI | Zbl
[5] B.I. Plotkin, “Problems in algebra inspired by universal algebraic geometry”, J. Math. Sci., New York, 139:4 (2006), 6780–6791 | DOI | MR | Zbl