\large Equationally Noetherian varieties of semigroups and B.~Plotkin's problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 724-734.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of semigroup equations with constants. A semigroup $S$ is called equationally Noetherian if any system of equations is equivalent over $S$ to a finite subsystem. In the current paper we describe all semigroup varieties that consist of equationally Noetherian semigroups. Our result solves the problem of B.Plotkin for semigroup varieties.
Keywords: semigroups, varieties, universal algebraic geometry.
@article{SEMR_2023_20_2_a3,
     author = {A. N. Shevlyakov},
     title = {\large {Equationally} {Noetherian} varieties of semigroups and {B.~Plotkin's} problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {724--734},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a3/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - \large Equationally Noetherian varieties of semigroups and B.~Plotkin's problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 724
EP  - 734
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a3/
LA  - en
ID  - SEMR_2023_20_2_a3
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T \large Equationally Noetherian varieties of semigroups and B.~Plotkin's problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 724-734
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a3/
%G en
%F SEMR_2023_20_2_a3
A. N. Shevlyakov. \large Equationally Noetherian varieties of semigroups and B.~Plotkin's problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 724-734. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a3/

[1] A.H. Clifford, G.B. Preston, The The algebraic theory of semigroups, v. I, AMS, Providence, 1961 | MR | Zbl

[2] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, II: Fundations”, J. Math. Sci., New York, 185:3 (2012), 389–416 | DOI | MR | Zbl

[3] T. Harju, J. Karhumäki, W. Plandowski, “Compactness of systems of equations in semigroups”, Automata, languages and programming, 22nd international colloquium, ICALP '95, Proceedings (Szeged, Hungary, July 10-14, 1995), LNCS, 944, eds. Fülöp Zoltán et al., Springer, Berlin, 1995, 444–454 | DOI | MR | Zbl

[4] T. Harju, J. Karhumäki, M. Petrich, “Compactness of systems of equations on completely regular semigroups”, Structures in logic and computer science, A selection of essays in honor of Andrzej Ehrenfeucht, LNCS, 1261, eds. Mycielski Jan et al.,, Springer, Berlin, 1997, 268–280 | DOI | Zbl

[5] B.I. Plotkin, “Problems in algebra inspired by universal algebraic geometry”, J. Math. Sci., New York, 139:4 (2006), 6780–6791 | DOI | MR | Zbl