Study of characteristics of the CUSUM procedure in a change point problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 987-1000.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of the CUSUM procedure in a change point problem. This procedure proposes an algorithm for the fastest detecting change in the distribution of observations. We obtain estimates in the form of inequalities for the average delay time in reacting to a change in distribution and for the average time to a false alarm.
Keywords: random walk with delay at origin, CUSUM procedure, change point problem, probabilistic inequalities.
@article{SEMR_2023_20_2_a29,
     author = {V. I. Lotov and A. S. Tarasenko},
     title = {Study of characteristics of the {CUSUM} procedure in a change point problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {987--1000},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a29/}
}
TY  - JOUR
AU  - V. I. Lotov
AU  - A. S. Tarasenko
TI  - Study of characteristics of the CUSUM procedure in a change point problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 987
EP  - 1000
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a29/
LA  - ru
ID  - SEMR_2023_20_2_a29
ER  - 
%0 Journal Article
%A V. I. Lotov
%A A. S. Tarasenko
%T Study of characteristics of the CUSUM procedure in a change point problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 987-1000
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a29/
%G ru
%F SEMR_2023_20_2_a29
V. I. Lotov; A. S. Tarasenko. Study of characteristics of the CUSUM procedure in a change point problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 987-1000. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a29/

[1] E.S. Page, “Continuous inspection schemes”, Biometrika, 41 (1954), 100–115 | DOI | MR | Zbl

[2] A.N. Shiryaev, “On optimum methods in quickest detection problems”, Theor. Probab. Appl., 8 (1963), 22–46 | DOI | MR | Zbl

[3] G. Lorden, “Procedures for reacting to a change in distribution”, Ann. Math. Stat., 42 (1971), 1897–1908 | DOI | MR | Zbl

[4] M. Pollak, “Average run lengh of an optimal method of detecting a change in distribution”, Ann. Stat., 15:2 (1987), 749–779 | DOI | MR | Zbl

[5] D. Siegmund, Sequential analysis. Tests and confidence intervals, Springer-Verlag, New York etc, 1985 | MR | Zbl

[6] A.A. Borovkov, Matematicheskaya statistika, Lan', Sankt-Peterburg, 2010; 2007 | Zbl

[7] V.I. Lotov, “On random walks in a strip”, Theory Probab. Appl., 36:1 (1991), 165–170 | DOI | MR | Zbl

[8] V.I. Lotov, “Asymptotic expansions for the CUSUM procedure in a change point problem”, Sib. Adv. Math., 2:3 (1992), 158–172 | MR | Zbl

[9] V.I. Lotov, “Bounds for the probability to leave the interval”, Stat. Probab. Lett., 145 (2019), 141–146 | DOI | MR | Zbl

[10] V.I. Lotov, “On some inequalities in boundary crossing problems for random walks”, Sib. Èlectron. Mat. Izv., 17 (2020), 661–671 | DOI | MR | Zbl

[11] G. Lorden, “On excess over the boundary”, Ann. Math. Stat., 41 (1970), 520–527 | DOI | MR | Zbl

[12] A.A. Borovkov, Stochastic processes in queueing theory, Springer, New York etc, 1976 | MR | Zbl

[13] A.A. Borovkov, Probability Theory, Springer, London, 2013 | MR | Zbl