Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 913-922.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the joint asymptotics of forward and backward processes of numbers of non-empty urns in an infinite urn scheme. The probabilities of balls hitting the urns are assumed to satisfy the conditions of regular decrease. We prove weak convergence to a two-dimensional Gaussian process. Its covariance function depends only on exponent of regular decrease of probabilities. We obtain parameter estimates that have a normal asymototics for its joint distribution together with forward and backward processes. We use these estimates to construct statistical tests for the homogeneity of the urn scheme on the number of thrown balls.
Keywords: Zipf's law, weak convergence, Gaussian process, statistical test.
@article{SEMR_2023_20_2_a27,
     author = {M. G. Chebunin and A. P. Kovalevskii},
     title = {Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {913--922},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a27/}
}
TY  - JOUR
AU  - M. G. Chebunin
AU  - A. P. Kovalevskii
TI  - Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 913
EP  - 922
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a27/
LA  - ru
ID  - SEMR_2023_20_2_a27
ER  - 
%0 Journal Article
%A M. G. Chebunin
%A A. P. Kovalevskii
%T Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 913-922
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a27/
%G ru
%F SEMR_2023_20_2_a27
M. G. Chebunin; A. P. Kovalevskii. Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 913-922. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a27/

[1] R.R. Bahadur, “On the number of distinct values in a large sample from an infinite discrete distribution”, Proc. Natl. Inst. Sci. India, Part A, Supp. II, 26 (1960), 67–75 | MR | Zbl

[2] A.D. Barbour, “Univariate approximations in the infinite occupancy scheme”, ALEA Lat. Am. J. Probab. Math. Stat., 6 (2009), 415–433 | MR

[3] A.D. Barbour, A.V. Gnedin, “Small counts in the infinite occupancy scheme”, Electron. J. Probab., 14 (2009), 13, 365–384 | MR | Zbl

[4] A. Ben-Hamou, S. Boucheron, M.I. Ohannessian, “Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications”, Bernoulli, 23:1 (2017), 249–287 | DOI | MR | Zbl

[5] A. Chakrabarty, M. Chebunin, A. Kovalevskii, I. Pupyshev, N. Zakrevskaya, Q. Zhou, “A statistical test for correspondence of texts to the Zipf-Mandelbrot law”, Sib. Èlektron. Mat. Izv., 17 (2020), 1959–1974 | DOI | MR | Zbl

[6] M.G. Chebunin, “Estimation of parameters of probabilistic models which is based on the number of different elements in a sample”, Sib. Zh. Ind. Mat., 17:3 (2014), 135–147 | MR | Zbl

[7] M.G. Chebunin, “Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails”, Sib. Èlektron. Mat. Izv., 14 (2017), 1289–1298 | MR | Zbl

[8] M. Chebunin, A. Kovalevskii, “Functional central limit theorems for certain statistics in an infinite urn scheme”, Stat. Probab. Lett., 119 (2016), 344–348 | DOI | MR | Zbl

[9] M. Chebunin, A. Kovalevskii, “A statistical test for the Zipf's law by deviations from the Heaps' law”, Sib. Èlektron. Mat. Izv., 16 (2019), 1822–1832 | DOI | MR | Zbl

[10] M. Chebunin, A. Kovalevskii, “Asymptotically normal estimators for Zipf's law”, Sankhyā, Ser. A, 81:2 (2019), 482–492 | MR | Zbl

[11] M. Chebunin, S. Zuyev, “Functional central limit theorems for occupancies and missing mass process in infinite urn models”, J. Theor. Probab., 35:1 (2020), 1–19 | DOI | MR | Zbl

[12] G. Decrouez, M. Grabchak, Q. Paris, “Finite sample properties of the mean occupancy counts and probabilities”, Bernoulli, 24:3 (2018), 1910–1941 | DOI | MR | Zbl

[13] O. Durieu, Y. Wang, “From infinite urn schemes to decompositions of self-similar Gaussian processes”, Electron. J. Probab., 21 (2016), 43 | DOI | MR | Zbl

[14] O. Durieu, G. Samorodnitsky, Y. Wang, “From infinite urn schemes to self-similar stable processes”, Stochastic Processes Appl., 130:4 (2020), 2471–2487 | DOI | MR | Zbl

[15] M. Dutko, “Central limit theorems for infinite urn models”, Ann. Probab., 17:3 (1989), 1255–1263 | DOI | MR | Zbl

[16] A. Guillou, P. Hall, “A diagnostic for selecting the threshold in extreme value analysis”, J. R. Stat. Soc., Ser. B, 63:2 (2001), 293–305 | DOI | MR | Zbl

[17] A. Gnedin, B. Hansen, J. Pitman, “Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws”, Probab. Surv., 4 (2007), 146–171 | DOI | MR | Zbl

[18] B.M. Hill, “A simple general approach to inference about the tail of a distribution”, Ann. Stat., 3:5 (1975), 1163–1174 | DOI | MR | Zbl

[19] H.-K. Hwang, S. Janson, “Local limit theorems for finite and infinite urn models”, Ann. Probab., 36:3 (2008), 992–1022 | DOI | MR | Zbl

[20] S. Karlin, “Central limit theorems for certain infinite urn schemes”, J. Math. Mech., 17:4 (1967), 373–401 | MR | Zbl

[21] E.S. Key, “Rare numbers”, J. Theor. Probab., 5:2 (1992), 375–389 | DOI | MR | Zbl

[22] E.S. Key, “Divergence rates for the number of rare numbers”, J. Theor. Probab., 9:2 (1996), 413–428 | DOI | MR | Zbl

[23] A. Muratov, S. Zuyev, “Bit flipping and time to recover”, J. Appl. Probab., 53:3 (2016), 650–666 | DOI | MR | Zbl

[24] P.T. Nicholls, “Estimation of Zipf parameters”, J. Am. Soc. Inf. Sci., 38:6 (1987), 443–445 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[25] M.I. Ohannessian, M.A. Dahleh, “Rare probability estimation under regularly varying heavy tails”, Proceedings of the 25th Annual Conference on Learning Theory, PMLR, 23, 2012, 21.1–21.24

[26] N.S. Zakrevskaya, A.P. Kovalevskii, “One-parameter probabilistic models for text statistics”, Sib. Zh. Ind. Mat., 4:2 (2001), 142–153 | MR | Zbl

[27] N. Zakrevskaya, A. Kovalevskii, “An omega-square statistics for analysis of correspondence of small texts to the Zipf-Mandelbrot law”, Applied methods of statistical analysis. Statistical computation and simulation, AMSA'2019, Proceedings of the International Workshop, NSTU, Novosibirsk, 2019, 488–494

[28] G.K. Zipf, The psycho-biology of language, Routledge, 1936