Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a27, author = {M. G. Chebunin and A. P. Kovalevskii}, title = {Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {913--922}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a27/} }
TY - JOUR AU - M. G. Chebunin AU - A. P. Kovalevskii TI - Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 913 EP - 922 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a27/ LA - ru ID - SEMR_2023_20_2_a27 ER -
%0 Journal Article %A M. G. Chebunin %A A. P. Kovalevskii %T Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 913-922 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a27/ %G ru %F SEMR_2023_20_2_a27
M. G. Chebunin; A. P. Kovalevskii. Limit theorems for forward and backward processes of numbers of non-empty urns in infinite urn schemes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 913-922. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a27/
[1] R.R. Bahadur, “On the number of distinct values in a large sample from an infinite discrete distribution”, Proc. Natl. Inst. Sci. India, Part A, Supp. II, 26 (1960), 67–75 | MR | Zbl
[2] A.D. Barbour, “Univariate approximations in the infinite occupancy scheme”, ALEA Lat. Am. J. Probab. Math. Stat., 6 (2009), 415–433 | MR
[3] A.D. Barbour, A.V. Gnedin, “Small counts in the infinite occupancy scheme”, Electron. J. Probab., 14 (2009), 13, 365–384 | MR | Zbl
[4] A. Ben-Hamou, S. Boucheron, M.I. Ohannessian, “Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications”, Bernoulli, 23:1 (2017), 249–287 | DOI | MR | Zbl
[5] A. Chakrabarty, M. Chebunin, A. Kovalevskii, I. Pupyshev, N. Zakrevskaya, Q. Zhou, “A statistical test for correspondence of texts to the Zipf-Mandelbrot law”, Sib. Èlektron. Mat. Izv., 17 (2020), 1959–1974 | DOI | MR | Zbl
[6] M.G. Chebunin, “Estimation of parameters of probabilistic models which is based on the number of different elements in a sample”, Sib. Zh. Ind. Mat., 17:3 (2014), 135–147 | MR | Zbl
[7] M.G. Chebunin, “Functional central limit theorem in an infinite urn scheme for distributions with superheavy tails”, Sib. Èlektron. Mat. Izv., 14 (2017), 1289–1298 | MR | Zbl
[8] M. Chebunin, A. Kovalevskii, “Functional central limit theorems for certain statistics in an infinite urn scheme”, Stat. Probab. Lett., 119 (2016), 344–348 | DOI | MR | Zbl
[9] M. Chebunin, A. Kovalevskii, “A statistical test for the Zipf's law by deviations from the Heaps' law”, Sib. Èlektron. Mat. Izv., 16 (2019), 1822–1832 | DOI | MR | Zbl
[10] M. Chebunin, A. Kovalevskii, “Asymptotically normal estimators for Zipf's law”, Sankhyā, Ser. A, 81:2 (2019), 482–492 | MR | Zbl
[11] M. Chebunin, S. Zuyev, “Functional central limit theorems for occupancies and missing mass process in infinite urn models”, J. Theor. Probab., 35:1 (2020), 1–19 | DOI | MR | Zbl
[12] G. Decrouez, M. Grabchak, Q. Paris, “Finite sample properties of the mean occupancy counts and probabilities”, Bernoulli, 24:3 (2018), 1910–1941 | DOI | MR | Zbl
[13] O. Durieu, Y. Wang, “From infinite urn schemes to decompositions of self-similar Gaussian processes”, Electron. J. Probab., 21 (2016), 43 | DOI | MR | Zbl
[14] O. Durieu, G. Samorodnitsky, Y. Wang, “From infinite urn schemes to self-similar stable processes”, Stochastic Processes Appl., 130:4 (2020), 2471–2487 | DOI | MR | Zbl
[15] M. Dutko, “Central limit theorems for infinite urn models”, Ann. Probab., 17:3 (1989), 1255–1263 | DOI | MR | Zbl
[16] A. Guillou, P. Hall, “A diagnostic for selecting the threshold in extreme value analysis”, J. R. Stat. Soc., Ser. B, 63:2 (2001), 293–305 | DOI | MR | Zbl
[17] A. Gnedin, B. Hansen, J. Pitman, “Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws”, Probab. Surv., 4 (2007), 146–171 | DOI | MR | Zbl
[18] B.M. Hill, “A simple general approach to inference about the tail of a distribution”, Ann. Stat., 3:5 (1975), 1163–1174 | DOI | MR | Zbl
[19] H.-K. Hwang, S. Janson, “Local limit theorems for finite and infinite urn models”, Ann. Probab., 36:3 (2008), 992–1022 | DOI | MR | Zbl
[20] S. Karlin, “Central limit theorems for certain infinite urn schemes”, J. Math. Mech., 17:4 (1967), 373–401 | MR | Zbl
[21] E.S. Key, “Rare numbers”, J. Theor. Probab., 5:2 (1992), 375–389 | DOI | MR | Zbl
[22] E.S. Key, “Divergence rates for the number of rare numbers”, J. Theor. Probab., 9:2 (1996), 413–428 | DOI | MR | Zbl
[23] A. Muratov, S. Zuyev, “Bit flipping and time to recover”, J. Appl. Probab., 53:3 (2016), 650–666 | DOI | MR | Zbl
[24] P.T. Nicholls, “Estimation of Zipf parameters”, J. Am. Soc. Inf. Sci., 38:6 (1987), 443–445 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[25] M.I. Ohannessian, M.A. Dahleh, “Rare probability estimation under regularly varying heavy tails”, Proceedings of the 25th Annual Conference on Learning Theory, PMLR, 23, 2012, 21.1–21.24
[26] N.S. Zakrevskaya, A.P. Kovalevskii, “One-parameter probabilistic models for text statistics”, Sib. Zh. Ind. Mat., 4:2 (2001), 142–153 | MR | Zbl
[27] N. Zakrevskaya, A. Kovalevskii, “An omega-square statistics for analysis of correspondence of small texts to the Zipf-Mandelbrot law”, Applied methods of statistical analysis. Statistical computation and simulation, AMSA'2019, Proceedings of the International Workshop, NSTU, Novosibirsk, 2019, 488–494
[28] G.K. Zipf, The psycho-biology of language, Routledge, 1936