Stability and instability of a random multiple access system with an energy harvesting and self-discharge mechanism
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 735-754.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a generalisation of the model of the classical synchronised multiple access system with a single transmission channel controlled by a randomised transmission protocol (ALOHA) and additionally equipped with an energy harvesting mechanism as well as self-discharge mechanism and suppose that message batteries may receive an unlimited amount of energy.
Mots-clés : Markov chains
Keywords: ALOHA algorithm, energy harvesting, self-discharge, generalised Foster criterion, ergodicity, transience.
@article{SEMR_2023_20_2_a25,
     author = {A. V. Rezler and M. G. Chebunin},
     title = {Stability and instability of a random multiple access system with an energy harvesting and self-discharge mechanism},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {735--754},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a25/}
}
TY  - JOUR
AU  - A. V. Rezler
AU  - M. G. Chebunin
TI  - Stability and instability of a random multiple access system with an energy harvesting and self-discharge mechanism
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 735
EP  - 754
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a25/
LA  - ru
ID  - SEMR_2023_20_2_a25
ER  - 
%0 Journal Article
%A A. V. Rezler
%A M. G. Chebunin
%T Stability and instability of a random multiple access system with an energy harvesting and self-discharge mechanism
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 735-754
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a25/
%G ru
%F SEMR_2023_20_2_a25
A. V. Rezler; M. G. Chebunin. Stability and instability of a random multiple access system with an energy harvesting and self-discharge mechanism. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 735-754. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a25/

[1] A. Harb, “Energy harvesting: State-of-the-art”, Renewable Energy, 36:10 (2011), 2641–2654 | DOI

[2] S. Sudevalayam, P. Kulkarni, “Energy harvesting sensor nodes: Survey and implications”, IEEE Communications Surveys Tutorials, 13:3 (2011), 443–461 | DOI

[3] Xun Zhou, Rui Zhang, Chin Keong Ho, “Wireless information and power transfer in multiuser OFDM systems”, IEEE Transactions on Wireless Communications, 13:4 (2014), 2282–2294 | DOI

[4] J. Jeon, A. Ephremides, “The stability region of random multiple access under stochastic energy harvesting”, Proceedings of the IEEE International Symposium on Information Theory (ISIT), 2011, 1796–1800

[5] A. Bergman, M. Sidi, “Energy efficiency of collision resolution protocols”, Computer Communications, 29:17 (2006), 3397–3415 | DOI | MR

[6] N. Abramson, “Development of the ALOHANET”, IEEE Trans. Info. Theory, 31 (1985), 119–123 | DOI | Zbl

[7] G. Fayolle, E. Gelenbe, J. Labetoulle, “Stability and optimal control of the packet switching broadcast channel”, J. Assoc. Comput. Mach., 24:3 (1977), 375–386 | DOI | MR | Zbl

[8] F.P. Kelly, I.M. McPhee, “The number of packets transmitted by collision detect random access schemes”, Ann. Probab., 15:4 (1987), 1557–1568 | DOI | MR | Zbl

[9] N. Vvedenskaya, Yu. Suhov, “Multi-access system with many users: Stability and metastability”, Probl. Inf. Transm., 43:3 (2007), 263–269 | DOI | MR | Zbl

[10] D. Kim, A. Turlikov, S. Foss, “Random multiple access with common energy harvesting mechanism”, Sib. Èlektron. Mat. Izv., 11 (2014), 896–905 | MR | Zbl

[11] S. Foss, D. Kim, A. Turlikov, “Stability and instability of a random multiple access model with adaptive energy harvesting”, Sib. Èlektron. Mat. Izv., 13 (2016), 16–25 | MR | Zbl

[12] A. Rezler, M. Chebunin, “Stability and instability of a random multiple access system with an energy harvesting mechanism”, Sib. Èlektron. Mat. Izv., 19:1 (2022), 1–17 | DOI | MR | Zbl

[13] S. Foss, T. Konstantopoulos, “An overview of some stochastic stability methods”, J. Oper. Res. Soc. Japan, 47:4 (2004), 275–303 | MR | Zbl

[14] S.G. Foss, D.E. Denisov, “On transience conditions for Markov chains”, Sib. Math. J., 42:2 (2001), 364–371 | DOI | MR | Zbl

[15] D.E. Denisov, Markov chains and random walks with heavy-tailed increments, PhD thesis, Heriot-Watt University, Edinburgh, 2004