Binary $(-1,1)$-bimodules over semisimple algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1605-1625
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the irreducible binary $(-1,1)$-bimodule over simple algebra with a unit is alternative. A criterion for alterna-tiveness (hence, complete reducibility) of unital binary $(-1,1)$-bimodule over a semisimple finite-dimensional algebra is obtained. It is proved that every unital strictly $(-1,1)$-bimodule over a finite-dimensional semisimple associative and commutative algebra is associative. The coordinateization theorem is proved for the matrix algebra ${\rm M}_n(\Phi)$ of order $n\geq 3$ in the class of binary $(-1,1)$-algebras. Finally, the following examples of indecomposable $(-1,1)$-bimodules are constructed: the non-unital bimodule over $1$-dimensional algebra $\Phi e$; the unital bimodule over a $2$-dimensional composition algebra $\Phi e_1 \oplus \Phi e_2$; the unital $(-1,1)$-bimodule over a quadratic extension $\Phi(\sqrt{\lambda})$ of the ground field; the unital strictly $(-1,1)$-bimodule over the field of fractionally rational functions of one variable $\Phi(t)$.
Keywords:
strictly $(-1,1)$-algebra, $(-1,1)$-algebra, binary $(-1,1)$-algebra, ${\mathfrak M}$-bimodule, irreducible bimodule, complete reducibility.
@article{SEMR_2023_20_2_a24,
author = {S. V. Pchelintsev},
title = {Binary $(-1,1)$-bimodules over semisimple algebras},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1605--1625},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a24/}
}
S. V. Pchelintsev. Binary $(-1,1)$-bimodules over semisimple algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1605-1625. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a24/