Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a24, author = {S. V. Pchelintsev}, title = {Binary $(-1,1)$-bimodules over semisimple algebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1605--1625}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a24/} }
S. V. Pchelintsev. Binary $(-1,1)$-bimodules over semisimple algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1605-1625. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a24/
[1] S. Eilenberg, “Extensions of general algebras”, Ann. Soc. Polon. Math., 21 (1948), 125–134 | MR | Zbl
[2] R.D. Schafer, “Representations of alternative algebras”, Trans. Am. Math. Soc., 72 (1952), 1–17 | DOI | MR | Zbl
[3] N. Svartholm, “On the algebras of relativistic quantum theories”, Fysiogr. Sällsk. Lund Förh., 12:9 (1942), 94–108 | MR | Zbl
[4] N. Jacobson, “Structure of alternative and Jordan bimodules”, Osaka Math. J., 6 (1954), 1–71 | MR | Zbl
[5] R. Carlsson, “Malcev–Moduln”, J. Reine Angew. Math., 281 (1976), 199–210 | MR | Zbl
[6] E.N. Kuz'min, “Mal'cev algebras and their representations”, Algebra Logic, 7 (1968), 48–69 | MR | Zbl
[7] A.M. Slinko, I.P. Shestakov, “Right representations of algebras”, Algebra Logic, 13 (1975), 312–333 | DOI | MR | Zbl
[8] A.N. Grishkov, “Structure and representations of binary-Lie algebras”, Math. USSR, Izv., 17 (1981), 243–269 | DOI | MR | Zbl
[9] L. Ikemoto Murakami, I.P. Shestakov, “Irreducible unital right alternative bimodules”, J. Algebra, 246:2 (2001), 897–914 | DOI | MR | Zbl
[10] S.V. Pchelintsev, “Irreducible binary (-1,1)-bimodules over simple finite-dimensional algebras”, Sib. Math. J., 47:5 (2006), 934–939 | DOI | MR | Zbl
[11] I. Shestakov, M. Trushina, “Irreducible bimodules over alternative algebras and superalgebras”, Trans. Am. Math. Soc., 368:7 (2016), 4657–4684 | DOI | MR | Zbl
[12] L.R. Borisova, S.V. Pchelintsev, “On the structure of alternative bimodules over semisimple Artinian algebras”, Russ. Math., 64:8 (2020), 1–7 | DOI | MR | Zbl
[13] L.I. Murakami, S.V. Pchelintsev, O.V. Shashkov, “Right alternative unital bimodules over the matrix algebras of order $\geq 3$”, Sib. Math. J., 63:4 (2022), 743–757 | DOI | MR | Zbl
[14] S.V. Pchelintsev, O.V. Shashkov, I.P. Shestakov, “Right alternative bimodules over Cayley algebra and coordinatization theorem”, J. Algebra, 572 (2021), 111–128 | DOI | MR | Zbl
[15] K.A. Zhevlakov, A.M. Slin'ko, I.P. Shestakov, A.I. Shirshov, Rings that are nearly associative, Pure and Applied Mathematics, 104, Academic Press, Inc., New York etc., 1982 | MR | Zbl
[16] L.A. Skornyakov, “Right-alternative skew-filds”, Izv. Akad. Nauk SSSR, Ser. Mat., 15:2 (1951), 177–184 | MR | Zbl
[17] E. Kleinfeld, “Right alternative rings”, Proc. Am. Math. Soc., 4 (1953), 939–944 | DOI | MR | Zbl
[18] S.V. Pchelintsev, “On central ideals of finitely generated binary (-1,1)-algebras”, Sb. Math., 193:4 (2002), 585–607 | DOI | MR | Zbl
[19] A. Thedy, “Right alternative rings”, J. Algebra, 37:1 (1975), 1–43 | DOI | MR | Zbl
[20] A.A. Albert, “The structure of right alternative algebras”, Ann. Math. (2), 59 (1954), 408–417 | DOI | MR | Zbl
[21] M. Zorn, “Theorie der alternativen Ringe”, Abhandlungen Hamburg, 8 (1930), 123–147 | DOI | MR | Zbl
[22] V.G. Skosyrskii, “Right alternative algebras”, Algebra Logic, 23 (1984), 131–136 | DOI | MR | Zbl
[23] I.M. Miheev, “Simple right alternative rings”, Algebra Logic, 16 (1978), 456–476 | DOI | MR | Zbl
[24] I.R. Hentzel, “The characterization of $(-1,1)$-rings”, J. Algebra, 30 (1974), 236–258 | DOI | MR | Zbl
[25] E. Kleinfeld, H.F. Smith, “Locally $(-1,1)$-rings”, Commun. Algebra, 3 (1975), 219–237 | DOI | MR | Zbl
[26] S.V. Pchelintsev, “Defining identities of a variety of right alternative algebras”, Mat. Zametki, 20:2 (1976), 161–176 | MR | Zbl
[27] S.V. Pchelintsev, “Prime alternative algebras that are nearly commutative”, Izv. Math., 68:1 (2004), 181–204 | DOI | MR | Zbl
[28] I.R. Hentzel, H.F. Smith, “Simple locally $(-1,1)$ nil rings”, J. Algebra, 101 (1986), 262–272 | DOI | MR | Zbl