Binary $(-1,1)$-bimodules over semisimple algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1605-1625

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the irreducible binary $(-1,1)$-bimodule over simple algebra with a unit is alternative. A criterion for alterna-tiveness (hence, complete reducibility) of unital binary $(-1,1)$-bimodule over a semisimple finite-dimensional algebra is obtained. It is proved that every unital strictly $(-1,1)$-bimodule over a finite-dimensional semisimple associative and commutative algebra is associative. The coordinateization theorem is proved for the matrix algebra ${\rm M}_n(\Phi)$ of order $n\geq 3$ in the class of binary $(-1,1)$-algebras. Finally, the following examples of indecomposable $(-1,1)$-bimodules are constructed: the non-unital bimodule over $1$-dimensional algebra $\Phi e$; the unital bimodule over a $2$-dimensional composition algebra $\Phi e_1 \oplus \Phi e_2$; the unital $(-1,1)$-bimodule over a quadratic extension $\Phi(\sqrt{\lambda})$ of the ground field; the unital strictly $(-1,1)$-bimodule over the field of fractionally rational functions of one variable $\Phi(t)$.
Keywords: strictly $(-1,1)$-algebra, $(-1,1)$-algebra, binary $(-1,1)$-algebra, ${\mathfrak M}$-bimodule, irreducible bimodule, complete reducibility.
@article{SEMR_2023_20_2_a24,
     author = {S. V. Pchelintsev},
     title = {Binary $(-1,1)$-bimodules over semisimple algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1605--1625},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a24/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - Binary $(-1,1)$-bimodules over semisimple algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1605
EP  - 1625
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a24/
LA  - ru
ID  - SEMR_2023_20_2_a24
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T Binary $(-1,1)$-bimodules over semisimple algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1605-1625
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a24/
%G ru
%F SEMR_2023_20_2_a24
S. V. Pchelintsev. Binary $(-1,1)$-bimodules over semisimple algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1605-1625. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a24/