Multivalued groups and Newton polyhedron
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1590-1596.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the set of complex number $\mathbb{C}$ it is possible to define $n$-valued group for any positive integer $n$. The $n$-multiplication defines a symmetric polynomial $p_n = p_n (x, y, z)$ with integer coefficients. By the theorem on symmetric polynomials, one can present $p_n$ as polynomial in elementary symmetric polynomials $e_1$, $e_2$, $e_3$. V. M. Buchstaber formulated a question on description coefficients of this polynomial. Also, he formulated the next question: How to describe the Newton polyhedron of $p_n$? In the present paper we find all coefficients of $p_n$ under monomials of the form $e_1^i e_2^j$ and prove that the Newton polyhedron of $p_n$ is a right triangle.
Keywords: multi-set, multivalued group, symmetric polynomial, Newton polyhedron.
@article{SEMR_2023_20_2_a23,
     author = {V. G. Bardakov and T. A. Kozlovskaya},
     title = {Multivalued groups and {Newton} polyhedron},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1590--1596},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a23/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - T. A. Kozlovskaya
TI  - Multivalued groups and Newton polyhedron
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1590
EP  - 1596
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a23/
LA  - en
ID  - SEMR_2023_20_2_a23
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A T. A. Kozlovskaya
%T Multivalued groups and Newton polyhedron
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1590-1596
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a23/
%G en
%F SEMR_2023_20_2_a23
V. G. Bardakov; T. A. Kozlovskaya. Multivalued groups and Newton polyhedron. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1590-1596. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a23/

[1] V.M. Buchstaber, “$n$-valued groups: theory and applications”, Mosc. Math. J., 6:1 (2006), 57–84 | DOI | MR | Zbl

[2] V.M. Buchstaber, S.P. Novikov, “Formal groups, power systems and Adams operators”, Mat. Sb., N.Ser., 84(126) (1971), 81–118 | MR | Zbl