Multivalued groups and Newton polyhedron
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1590-1596
Voir la notice de l'article provenant de la source Math-Net.Ru
On the set of complex number $\mathbb{C}$ it is possible to define $n$-valued group for any positive integer $n$. The $n$-multiplication defines a symmetric polynomial $p_n = p_n (x, y, z)$ with integer coefficients. By the theorem on symmetric polynomials, one can present $p_n$ as polynomial in elementary symmetric polynomials $e_1$, $e_2$, $e_3$. V. M. Buchstaber formulated a question on description coefficients of this polynomial. Also, he formulated the next question: How to describe the Newton polyhedron of $p_n$? In the present paper we find all coefficients of $p_n$ under monomials of the form $e_1^i e_2^j$ and prove that the Newton polyhedron of $p_n$ is a right triangle.
Keywords:
multi-set, multivalued group, symmetric polynomial, Newton polyhedron.
@article{SEMR_2023_20_2_a23,
author = {V. G. Bardakov and T. A. Kozlovskaya},
title = {Multivalued groups and {Newton} polyhedron},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1590--1596},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a23/}
}
TY - JOUR AU - V. G. Bardakov AU - T. A. Kozlovskaya TI - Multivalued groups and Newton polyhedron JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1590 EP - 1596 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a23/ LA - en ID - SEMR_2023_20_2_a23 ER -
V. G. Bardakov; T. A. Kozlovskaya. Multivalued groups and Newton polyhedron. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1590-1596. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a23/