Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a22, author = {M. Kh. Faizrahmanov}, title = {Effectively infinite classes of numberings and fixed point theorems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1519--1536}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a22/} }
TY - JOUR AU - M. Kh. Faizrahmanov TI - Effectively infinite classes of numberings and fixed point theorems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1519 EP - 1536 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a22/ LA - ru ID - SEMR_2023_20_2_a22 ER -
M. Kh. Faizrahmanov. Effectively infinite classes of numberings and fixed point theorems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1519-1536. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a22/
[1] S.S. Goncharov, A. Yakhnis, V. Yakhnis, “Some effectively infinite classes of enumerations”, Ann. Pure App. Logic, 60:3 (1993), 207–235 | DOI | MR | Zbl
[2] A.I. Mal'tsev, “Completely enumerated sets”, Algebra Logika, 2:2 (1963), 4–29 | MR | Zbl
[3] A.I. Mal'tsev, The metamathematics of algebraic systems, North-Holland, Amsterdam–London, 1971 https://lib.ugent.be/catalog/rug01:000004761 | Zbl
[4] Yu.L. Ershov, “Theorie der numerierungen I”, Z. Math. Log. Grundl. Math., 19 (1973), 289–388 | DOI | MR | Zbl
[5] Yu.L. Ershov, Theory of numberings, Nauka, M., 1977 | MR
[6] Yu.L. Ershov, “Completely enumerated sets”, Sib. Math. J., 10 (1970), 773–784 | DOI | MR | Zbl
[7] Yu.L. Ershov, “On inseparable pairs”, Algebra Logic, 9:6 (1972), 396–399 | DOI | MR | Zbl
[8] V.L. Selivanov, “Index sets of quotient objects of the Post numeration”, Algebra Logic, 27:3 (1988), 215–224 | DOI | MR | Zbl
[9] S.A. Badaev, S.S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and Models, Univ. Ser. Math., Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | DOI | MR
[10] H. Barendregt, S.A. Terwijn, “Fixed point theorems for precomplete numberings”, Ann. Pure App. Logic, 170:10 (2019), 1151–1161 | DOI | MR | Zbl
[11] M.M. Arslanov, “Fixed-point selection functions”, Lobachevskii J. Math., 42:4 (2021), 685–692 | DOI | MR | Zbl
[12] V.L. Selivanov, “Precomplete numberings”, J. Math. Sci., New York, 256:1 (2021), 96–124 | DOI | MR | Zbl
[13] T.H. Payne, “Effective extendability and fixed-points”, Notre Dame J. Formal Logic, 14:1 (1973), 123–124 | DOI | MR | Zbl
[14] S.A. Badaev, “On weakly pre-complete positive equivalences”, Sib. Math. J., 32:2 (1991), 321–323 | DOI | MR | Zbl
[15] M. Faizrahmanov, “Extremal numberings and fixed point theorems”, Math. Log. Q., 68:4 (2022), 398–408 | DOI | MR | Zbl
[16] Yu.L. Ershov, “Theory of numberings”, Handbook of computability theory, Elsevier. Stud. Logic Found. Math., 140, ed. Griffor Edward R., Elsevier, Amsterdam, 1999, 473–503 | DOI | MR | Zbl
[17] R.I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspectives in Mathematical Logic, Springer-Verlag, Berlin etc., 1987 https://link.springer.com/book/9783540666813 | DOI | MR | Zbl
[18] R.I. Soare, Turing computability. Theory and applications, Springer, Berlin, 2016 | DOI | MR | Zbl
[19] Yu.L. Ershov, “Theorie der numerierungen II”, Z. Math. Log. Grundl. Math., 21:1 (1975), 473–584 | DOI | MR | Zbl
[20] R.M. Friedberg, “Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication”, J. Symb. Log., 23:3 (1959), 309–316 | DOI | MR | Zbl