Effectively infinite classes of numberings and fixed point theorems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1519-1536
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove a sufficient condition for the effective infinity of classes of complete and precomplete numberings, as well as numberings satisfying the recursion theorem, of computable families. A sufficient condition for the effective infinity of classes of non-precomplete numberings of computable families satisfying the recursion theorem is also obtained. These conditions are satisfied by the family of all c.e. sets and the family of graphs of all partially computable functions. For finite families of c.e. sets, we prove a criterion for the effective infinity of classes of their numberings that satisfy the recursion theorem. Finally, it is established that the classes of complete and precomplete numberings of finite families of c.e. sets are not effectively infinite.
Keywords:
computable numbering, complete numbering, precomplete numbering, recursion theorem, effective infinity.
@article{SEMR_2023_20_2_a22,
author = {M. Kh. Faizrahmanov},
title = {Effectively infinite classes of numberings and fixed point theorems},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1519--1536},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a22/}
}
TY - JOUR AU - M. Kh. Faizrahmanov TI - Effectively infinite classes of numberings and fixed point theorems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1519 EP - 1536 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a22/ LA - ru ID - SEMR_2023_20_2_a22 ER -
M. Kh. Faizrahmanov. Effectively infinite classes of numberings and fixed point theorems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1519-1536. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a22/