On weakly $\mathrm{tcc}$-subgroups of finite groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1464-1473

Voir la notice de l'article provenant de la source Math-Net.Ru

The subgroups $A$ and $B$ are said to be {\sl $\mathrm{cc}$-permutable}, if $A$ is permutable with $B^x$ for some ${x\in \langle A,B\rangle}$. A subgroup $A$ of a finite group $G$ is called {\sl weakly $\mathrm{tcc}$-subgroup ($\mathrm{wtcc}$‑\hspace{0pt}subgroup, for brevity)} in $G$, if there exists a subgroup $Y$ of $G$ such that $G=AY$ and $A$ has a chief series ${1=A_0\leq A_1\leq \ldots \leq A_{s-1}\leq A_s=A}$ such that every $A_i$ is $\mathrm{cc}$-permutable with all subgroups of $Y$ for all $i=1, \ldots, s$. In this paper, we studied the influence of given systems of $\mathrm{wtcc}$-subgroups on the structure of a group $G$.
Keywords: Finite group, $\mathrm{cc}$-permutable subgroups, Sylow subgroups, maximal subgroups, supersoluble group.
@article{SEMR_2023_20_2_a21,
     author = {A. Trofimuk},
     title = {On weakly $\mathrm{tcc}$-subgroups of finite groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1464--1473},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a21/}
}
TY  - JOUR
AU  - A. Trofimuk
TI  - On weakly $\mathrm{tcc}$-subgroups of finite groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1464
EP  - 1473
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a21/
LA  - en
ID  - SEMR_2023_20_2_a21
ER  - 
%0 Journal Article
%A A. Trofimuk
%T On weakly $\mathrm{tcc}$-subgroups of finite groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1464-1473
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a21/
%G en
%F SEMR_2023_20_2_a21
A. Trofimuk. On weakly $\mathrm{tcc}$-subgroups of finite groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1464-1473. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a21/