On weakly $\mathrm{tcc}$-subgroups of finite groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1464-1473.

Voir la notice de l'article provenant de la source Math-Net.Ru

The subgroups $A$ and $B$ are said to be {\sl $\mathrm{cc}$-permutable}, if $A$ is permutable with $B^x$ for some ${x\in \langle A,B\rangle}$. A subgroup $A$ of a finite group $G$ is called {\sl weakly $\mathrm{tcc}$-subgroup ($\mathrm{wtcc}$‑\hspace{0pt}subgroup, for brevity)} in $G$, if there exists a subgroup $Y$ of $G$ such that $G=AY$ and $A$ has a chief series ${1=A_0\leq A_1\leq \ldots \leq A_{s-1}\leq A_s=A}$ such that every $A_i$ is $\mathrm{cc}$-permutable with all subgroups of $Y$ for all $i=1, \ldots, s$. In this paper, we studied the influence of given systems of $\mathrm{wtcc}$-subgroups on the structure of a group $G$.
Keywords: Finite group, $\mathrm{cc}$-permutable subgroups, Sylow subgroups, maximal subgroups, supersoluble group.
@article{SEMR_2023_20_2_a21,
     author = {A. Trofimuk},
     title = {On weakly $\mathrm{tcc}$-subgroups of finite groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1464--1473},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a21/}
}
TY  - JOUR
AU  - A. Trofimuk
TI  - On weakly $\mathrm{tcc}$-subgroups of finite groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1464
EP  - 1473
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a21/
LA  - en
ID  - SEMR_2023_20_2_a21
ER  - 
%0 Journal Article
%A A. Trofimuk
%T On weakly $\mathrm{tcc}$-subgroups of finite groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1464-1473
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a21/
%G en
%F SEMR_2023_20_2_a21
A. Trofimuk. On weakly $\mathrm{tcc}$-subgroups of finite groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1464-1473. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a21/

[1] B. Huppert, Finite groups, v. I, Springer-Verlag, Berlin etc, 1967 | Zbl

[2] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, de Gruyter Expositions in Mathematics, 53, Walter de Gruyter, Berlin, 2010 | MR | Zbl

[3] W. Guo, K.P. Shum, A.N. Skiba, “Criterions of supersolubility of products of supersoluble groups”, Publ. Math. Debr., 68:3-4 (2006), 433–449 | DOI | MR | Zbl

[4] M. Arroyo-Jordá, P. Arroyo-Jordá, “Conditional permutability of subgroups and certain classes of groups”, J. Algebra, 476 (2017), 395–414 | DOI | MR | Zbl

[5] W. Guo, Structure theory for canonical classes of finite groups, Springer, Berlin, 2015 | MR | Zbl

[6] A.A. Trofimuk, “On the supersolubility of a group with some tcc-subgroups”, J. Algebra Appl., 20:2 (2021), 2150020 | DOI | MR | Zbl

[7] V.S. Monakhov, A.A. Trofimuk, “On the supersolubility of a finite group with NS-supplemented subgroups”, Acta Math. Hung., 160:1 (2020), 161–167 | DOI | MR | Zbl

[8] Algorithms, Programming – a System for Computational Discrete Algebra, Ver. GAP 4.12.2 released on 18 December 2022, GAP – Groups http://www.gap-system.org

[9] H. Wielandt, “Subnormalität in faktorisierten endlichen Gruppen”, J. Algebra, 69 (1981), 305–311 | DOI | MR | Zbl

[10] K. Doerk, “Minimal nicht überauflösbare, endliche Gruppen”, Math. Z., 91 (1966), 198–205 | DOI | MR | Zbl

[11] V.N. Tyutyanov, V.N. Kniahina, “Finite groups with biprimary Hall subgroups”, J. Algebra, 443 (2015), 430–440 | DOI | MR | Zbl

[12] K. Doerk, T. Hawkes, Finite soluble groups, W. de Gruyter, Berlin etc, 1992 | MR | Zbl

[13] V.N. Knyagina, V.S. Monakhov, “Finite groups with seminormal Schmidt subgroups”, Algebra Logic, 46:4 (2007), 244–249 | DOI | MR | Zbl

[14] C. Casolo, “A criterion for subnormality and Wielandt complexes in finite groups”, J. Algebra, 169:2 (1994), 605–624 | DOI | MR | Zbl