On weakly $\mathrm{tcc}$-subgroups of finite groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1464-1473
Voir la notice de l'article provenant de la source Math-Net.Ru
The subgroups $A$ and $B$ are said to be {\sl $\mathrm{cc}$-permutable}, if $A$ is permutable with $B^x$ for some ${x\in \langle A,B\rangle}$. A subgroup $A$ of a finite group $G$ is called {\sl weakly $\mathrm{tcc}$-subgroup ($\mathrm{wtcc}$‑\hspace{0pt}subgroup, for brevity)} in $G$, if there exists a subgroup $Y$ of $G$ such that $G=AY$ and $A$ has a chief series ${1=A_0\leq A_1\leq \ldots \leq A_{s-1}\leq A_s=A}$ such that every $A_i$ is $\mathrm{cc}$-permutable with all subgroups of $Y$ for all $i=1, \ldots, s$. In this paper, we studied the influence of given systems of $\mathrm{wtcc}$-subgroups on the structure of a group $G$.
Keywords:
Finite group, $\mathrm{cc}$-permutable subgroups, Sylow subgroups, maximal subgroups, supersoluble group.
@article{SEMR_2023_20_2_a21,
author = {A. Trofimuk},
title = {On weakly $\mathrm{tcc}$-subgroups of finite groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1464--1473},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a21/}
}
A. Trofimuk. On weakly $\mathrm{tcc}$-subgroups of finite groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1464-1473. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a21/