Seven-dimensional real and complex unsolvable Lie algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1443-1463.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the classification up to isomorphism of abstract unsolvable Lie algebras of dimension $7$. With the help of Maltsev splitting, the problem of describing Lie algebras over a field of characteristic zero is reduced to describing almost algebraic Lie algebras, which, in turn, require knowledge of semisimple and nilpotent algebras. Based on the classifications of semisimple and nilpotent Lie algebras, the paper presents an algorithm for describing abstract Lie algebras and conducts the classification of seven-dimensional unsolvable Lie algebras over fields ${\mathbb R}$ and ${\mathbb C}$.
Mots-clés : unsolvable Lie algebra, classification algorithm.
Keywords: Maltsev splitting, almost algebraic Lie algebra
@article{SEMR_2023_20_2_a20,
     author = {N. P. Mozhey},
     title = {Seven-dimensional real and complex unsolvable {Lie} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1443--1463},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a20/}
}
TY  - JOUR
AU  - N. P. Mozhey
TI  - Seven-dimensional real and complex unsolvable Lie algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1443
EP  - 1463
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a20/
LA  - ru
ID  - SEMR_2023_20_2_a20
ER  - 
%0 Journal Article
%A N. P. Mozhey
%T Seven-dimensional real and complex unsolvable Lie algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1443-1463
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a20/
%G ru
%F SEMR_2023_20_2_a20
N. P. Mozhey. Seven-dimensional real and complex unsolvable Lie algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1443-1463. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a20/

[1] A. Hasić, “Introduction to Lie algebras and their representations”, Advances in Linear Algebra and Matrix Theory, 11 (2021), 67–91 | MR

[2] A.Hasić, “Representations of Lie groups”, Advances in Linear Algebra and Matrix Theory, 11 (2021), 117–134

[3] S. Lie, Vorlesungen über continuirliche Gruppen mit geometrischen und anderen Anwendungen, B.G. Teubner, Leipzig, 1893 | MR | Zbl

[4] G.M. Mubarakzyanov, “On solvable Lie algebras”, Izv. Vyssh. Uchebn. Zaved., Mat., 1963:1 (1963), 114–123 | MR | Zbl

[5] G.M. Mubarakzyanov, “Classification of real structures of Lie algebras of the fifth order”, Izv. Vyssh. Uchebn. Zaved., Mat., 1963:3 (1963), 99–106 | MR | Zbl

[6] K.A. Umlauf, Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen insbesondere der Gruppen vom Range Null, Thesis, University of Leipzig, Germany, 1891

[7] V.V. Morozov, “Classification of nilpotent Lie algebras of sixth order”, Izv. Vyssh. Uchebn. Zaved., Mat., 1958:4 (1958), 161–171 | MR | Zbl

[8] P. Turkowski, “Low-dimensional real Lie algebras”, J. Math. Phys., 29 (1988), 2139–2144 | DOI | MR | Zbl

[9] P. Turkowski, “Structure of real Lie algebras”, Linear Algebra Appl., 171 (1992), 197–212 | DOI | MR | Zbl

[10] G.M. Mubarakzyanov, “Classification of solvable Lie algebras of dimension six with a non-nilpotent basis element”, Izv. Vyssh. Uchebn. Zaved., Mat., 1963:4 (1963), 104–116 | MR | Zbl

[11] P. Turkowski, “Solvable Lie algebras of dimension six”, J. Math. Phys., 31:6 (1990), 1344–1350 | DOI | MR | Zbl

[12] L. Šnobl, P. Winternitz, Classification and identification of Lie algebras, CRM Monograph Series, 33, AMS, Providence, 2014 | MR | Zbl

[13] A. Shabanskaya, G. Thompson, “Six-dimensional Lie algebras with a five-dimensional nilradical”, J. Lie Theory, 23:2 (2013), 313–355 | MR | Zbl

[14] E.N. Safiullina, Classification of nilpotent Lie algebras of order 7, Thesis, Candidates Works, No 64, Math. Mech. Phys., Izdat. Kazan Univ., Kazan, 1964 | MR

[15] J.M. Ancochea-Bermudez, M. Goze, “Sur la classification des algebres de Lie nilpotentes de dimension 7”, C. R. Acad. Sci., Paris, Sér. I, 302 (1986), 611–613 | MR | Zbl

[16] L. Magnin, “On the nilpotent Lie algebras of dimension $\le 7$”, J. Geom. Phys., 3:1 (1986), 119–144 | DOI | MR | Zbl

[17] M. Romdhani, “Classification of real and complex nilpotent Lie algebras of dimension 7”, Linear Multilinear Algebra, 24:3 (1989), 167–189 | DOI | MR | Zbl

[18] C. Seeley, “7-dimensional nilpotent Lie algebras”, Trans. AMS, 335:2 (1993), 479–496 | MR | Zbl

[19] M.P. Gong, Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and R), PhD thesis, University of Waterloo, 1998 | MR

[20] N.M.P.S.K. Bandara, G. Thompson, “Ten-dimensional Lie algebras with so(3) semi-simple factor”, J. Lie Theory, 31:1 (2021), 93–118 | MR | Zbl

[21] N.M.P.S.K. Bandara, G. Thompson, “Erratum to: “Ten-dimensional Lie algebras with so(3) semi-simple factor””, J. Lie Theory, 31:4 (2021), 1025–1030 | MR | Zbl

[22] R. Campoamor-Stursberg, Structural data and invariants of nine dimensional real Lie algebras with nontrivial Levi decomposition, Nova Science Publishers, New York, 2009 | MR | Zbl

[23] R. Ghanam, M. Lamichhane, G. Thompson, “Minimal representations of Lie algebras with non-trivial Levi decomposition”, Arab. J. Math., 6:4 (2017), 281–296 | DOI | MR | Zbl

[24] S. Khanal, R. Subedi, G. Thompson, “Representations of nine-dimensional Levi decomposition Lie algebras”, J. Pure Appl. Algebra, 224:3 (2020), 1340–1363 | DOI | MR | Zbl

[25] D.V. Millionshchikov, R. Jimenez, “Geometry of central extensions of nilpotent Lie algebras”, Proc. Steklov Inst. Math., 305 (2019), 209–231 | DOI | MR | Zbl

[26] Vu Anh Le, Tuan A. Nguyen, Tu T. C. Nguyen, Tuyen T. M. Nguyen, Thieu N. Vo, “Applying matrix theory to classify real solvable Lie algebras having 2-dimensional derived ideals”, Linear Algebra Appl., 588 (2020), 282–303 | DOI | MR | Zbl

[27] Vu A. Le, Hai T. T. Cao, Hoa Q. Duong, Tuan A. Nguyen, Thieu N. Vo, “On the problem of classifying solvable Lie algebras having small codimensional derived algebras”, Commun. Algebra, 50:9 (2022), 3775–3793 | DOI | MR | Zbl

[28] A.R. Parry, A classification of real indecomposable solvable Lie algebras of small dimension with codimension one nilradicals, Master's thesis, Utah State University, Logan, Utah, 2007, arXiv: 1311.6069

[29] F. Hindeleh, G. Thompson, “Seven dimensional Lie algebras with a four-dimensional nilradical”, Algebras Groups Geom., 25:3 (2008), 243–265 | MR | Zbl

[30] Vu A. Le, Tuan A. Nguyen, Tu T. C. Nguyen, Tuyen T. M. Nguyen, Thieu N. Vo, Classification of 7-dimensional solvable Lie algebras having 5-dimensional nilradicals, arXiv: 2107.03990 | MR

[31] N. Mozhei, “Homogeneous submanifolds in the four-dimensional affine and projective geometry”, Russ. Math., 44:7 (2000), 39–49 | MR | Zbl

[32] N. Bourbaki, Lie groups and Lie algebras, Springer, Berlin, 2008 ; 1998 | MR | Zbl | Zbl

[33] A.I. Maltsev, On solvable Lie algebras, Am. Math. Soc. Transl., 27, 1950 | MR | Zbl

[34] V.V. Gorbatsevich, “Splittings of Lie groups and their application to the study of homogeneous spaces”, Math. USSR, Izv., 15:3 (1980), 441–467 | DOI | Zbl

[35] L. Auslander, J. Bresin, “Almost algebraic Lie algebras”, J. Algebra, 8:3 (1968), 295–313 | DOI | MR | Zbl

[36] M. Goto, F. Grosshans, Semisimple Lie algebras, M. Dekker, New York–Basel, 1978 | MR | Zbl

[37] N.P. Mozhey, Three-dimensional isotropically-faithful homogeneous spaces and connections on them, Izd-vo Kazan. un-ta, Kazan', 2015

[38] N.P. Mozhey, “Linear Lie algebras on a four-dimensional space”, Works of BSTU. Series 3: Physical and Mathematical Sciences and Computer Science, 236:2 (2020), 42–47 | MR