Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a20, author = {N. P. Mozhey}, title = {Seven-dimensional real and complex unsolvable {Lie} algebras}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1443--1463}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a20/} }
N. P. Mozhey. Seven-dimensional real and complex unsolvable Lie algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1443-1463. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a20/
[1] A. Hasić, “Introduction to Lie algebras and their representations”, Advances in Linear Algebra and Matrix Theory, 11 (2021), 67–91 | MR
[2] A.Hasić, “Representations of Lie groups”, Advances in Linear Algebra and Matrix Theory, 11 (2021), 117–134
[3] S. Lie, Vorlesungen über continuirliche Gruppen mit geometrischen und anderen Anwendungen, B.G. Teubner, Leipzig, 1893 | MR | Zbl
[4] G.M. Mubarakzyanov, “On solvable Lie algebras”, Izv. Vyssh. Uchebn. Zaved., Mat., 1963:1 (1963), 114–123 | MR | Zbl
[5] G.M. Mubarakzyanov, “Classification of real structures of Lie algebras of the fifth order”, Izv. Vyssh. Uchebn. Zaved., Mat., 1963:3 (1963), 99–106 | MR | Zbl
[6] K.A. Umlauf, Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen insbesondere der Gruppen vom Range Null, Thesis, University of Leipzig, Germany, 1891
[7] V.V. Morozov, “Classification of nilpotent Lie algebras of sixth order”, Izv. Vyssh. Uchebn. Zaved., Mat., 1958:4 (1958), 161–171 | MR | Zbl
[8] P. Turkowski, “Low-dimensional real Lie algebras”, J. Math. Phys., 29 (1988), 2139–2144 | DOI | MR | Zbl
[9] P. Turkowski, “Structure of real Lie algebras”, Linear Algebra Appl., 171 (1992), 197–212 | DOI | MR | Zbl
[10] G.M. Mubarakzyanov, “Classification of solvable Lie algebras of dimension six with a non-nilpotent basis element”, Izv. Vyssh. Uchebn. Zaved., Mat., 1963:4 (1963), 104–116 | MR | Zbl
[11] P. Turkowski, “Solvable Lie algebras of dimension six”, J. Math. Phys., 31:6 (1990), 1344–1350 | DOI | MR | Zbl
[12] L. Šnobl, P. Winternitz, Classification and identification of Lie algebras, CRM Monograph Series, 33, AMS, Providence, 2014 | MR | Zbl
[13] A. Shabanskaya, G. Thompson, “Six-dimensional Lie algebras with a five-dimensional nilradical”, J. Lie Theory, 23:2 (2013), 313–355 | MR | Zbl
[14] E.N. Safiullina, Classification of nilpotent Lie algebras of order 7, Thesis, Candidates Works, No 64, Math. Mech. Phys., Izdat. Kazan Univ., Kazan, 1964 | MR
[15] J.M. Ancochea-Bermudez, M. Goze, “Sur la classification des algebres de Lie nilpotentes de dimension 7”, C. R. Acad. Sci., Paris, Sér. I, 302 (1986), 611–613 | MR | Zbl
[16] L. Magnin, “On the nilpotent Lie algebras of dimension $\le 7$”, J. Geom. Phys., 3:1 (1986), 119–144 | DOI | MR | Zbl
[17] M. Romdhani, “Classification of real and complex nilpotent Lie algebras of dimension 7”, Linear Multilinear Algebra, 24:3 (1989), 167–189 | DOI | MR | Zbl
[18] C. Seeley, “7-dimensional nilpotent Lie algebras”, Trans. AMS, 335:2 (1993), 479–496 | MR | Zbl
[19] M.P. Gong, Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and R), PhD thesis, University of Waterloo, 1998 | MR
[20] N.M.P.S.K. Bandara, G. Thompson, “Ten-dimensional Lie algebras with so(3) semi-simple factor”, J. Lie Theory, 31:1 (2021), 93–118 | MR | Zbl
[21] N.M.P.S.K. Bandara, G. Thompson, “Erratum to: “Ten-dimensional Lie algebras with so(3) semi-simple factor””, J. Lie Theory, 31:4 (2021), 1025–1030 | MR | Zbl
[22] R. Campoamor-Stursberg, Structural data and invariants of nine dimensional real Lie algebras with nontrivial Levi decomposition, Nova Science Publishers, New York, 2009 | MR | Zbl
[23] R. Ghanam, M. Lamichhane, G. Thompson, “Minimal representations of Lie algebras with non-trivial Levi decomposition”, Arab. J. Math., 6:4 (2017), 281–296 | DOI | MR | Zbl
[24] S. Khanal, R. Subedi, G. Thompson, “Representations of nine-dimensional Levi decomposition Lie algebras”, J. Pure Appl. Algebra, 224:3 (2020), 1340–1363 | DOI | MR | Zbl
[25] D.V. Millionshchikov, R. Jimenez, “Geometry of central extensions of nilpotent Lie algebras”, Proc. Steklov Inst. Math., 305 (2019), 209–231 | DOI | MR | Zbl
[26] Vu Anh Le, Tuan A. Nguyen, Tu T. C. Nguyen, Tuyen T. M. Nguyen, Thieu N. Vo, “Applying matrix theory to classify real solvable Lie algebras having 2-dimensional derived ideals”, Linear Algebra Appl., 588 (2020), 282–303 | DOI | MR | Zbl
[27] Vu A. Le, Hai T. T. Cao, Hoa Q. Duong, Tuan A. Nguyen, Thieu N. Vo, “On the problem of classifying solvable Lie algebras having small codimensional derived algebras”, Commun. Algebra, 50:9 (2022), 3775–3793 | DOI | MR | Zbl
[28] A.R. Parry, A classification of real indecomposable solvable Lie algebras of small dimension with codimension one nilradicals, Master's thesis, Utah State University, Logan, Utah, 2007, arXiv: 1311.6069
[29] F. Hindeleh, G. Thompson, “Seven dimensional Lie algebras with a four-dimensional nilradical”, Algebras Groups Geom., 25:3 (2008), 243–265 | MR | Zbl
[30] Vu A. Le, Tuan A. Nguyen, Tu T. C. Nguyen, Tuyen T. M. Nguyen, Thieu N. Vo, Classification of 7-dimensional solvable Lie algebras having 5-dimensional nilradicals, arXiv: 2107.03990 | MR
[31] N. Mozhei, “Homogeneous submanifolds in the four-dimensional affine and projective geometry”, Russ. Math., 44:7 (2000), 39–49 | MR | Zbl
[32] N. Bourbaki, Lie groups and Lie algebras, Springer, Berlin, 2008 ; 1998 | MR | Zbl | Zbl
[33] A.I. Maltsev, On solvable Lie algebras, Am. Math. Soc. Transl., 27, 1950 | MR | Zbl
[34] V.V. Gorbatsevich, “Splittings of Lie groups and their application to the study of homogeneous spaces”, Math. USSR, Izv., 15:3 (1980), 441–467 | DOI | Zbl
[35] L. Auslander, J. Bresin, “Almost algebraic Lie algebras”, J. Algebra, 8:3 (1968), 295–313 | DOI | MR | Zbl
[36] M. Goto, F. Grosshans, Semisimple Lie algebras, M. Dekker, New York–Basel, 1978 | MR | Zbl
[37] N.P. Mozhey, Three-dimensional isotropically-faithful homogeneous spaces and connections on them, Izd-vo Kazan. un-ta, Kazan', 2015
[38] N.P. Mozhey, “Linear Lie algebras on a four-dimensional space”, Works of BSTU. Series 3: Physical and Mathematical Sciences and Computer Science, 236:2 (2020), 42–47 | MR