On the existence of nef-partitions for smooth well-formed Fano weighted complete intersections
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1405-1419.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nef-partition for a weighted complete intersection is a combinatorial structure on its weights and degrees which is important for Mirror Symmetry. It is known that nef-partitions exist for smooth well-formed Fano weighted complete intersections of small dimension or codimension, and that in these cases they are strong in the sense that they can be realized as fibers of morphisms of weighted simplicial complexes, i.e., finite abstract simplicial complexes equipped with a weight function. It was conjectured that this approach can be extended to the case of arbitrary codimension. We show that in the case of any codimension greater than $3$ strong nef-partitions may not exist, and provide a sufficient combinatorial condition for existence of a strong nef-partition in terms of weights. We also show that the combinatorics of smooth well-formed weighted complete intersections can be arbitrarily complicated from the point of view of simplicial geometry.
Keywords: weighted complete intersections, mirror symmetry.
@article{SEMR_2023_20_2_a19,
     author = {M. A. Ovcharenko},
     title = {On the existence of nef-partitions for smooth well-formed {Fano} weighted complete intersections},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1405--1419},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a19/}
}
TY  - JOUR
AU  - M. A. Ovcharenko
TI  - On the existence of nef-partitions for smooth well-formed Fano weighted complete intersections
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1405
EP  - 1419
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a19/
LA  - en
ID  - SEMR_2023_20_2_a19
ER  - 
%0 Journal Article
%A M. A. Ovcharenko
%T On the existence of nef-partitions for smooth well-formed Fano weighted complete intersections
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1405-1419
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a19/
%G en
%F SEMR_2023_20_2_a19
M. A. Ovcharenko. On the existence of nef-partitions for smooth well-formed Fano weighted complete intersections. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1405-1419. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a19/

[1] V.V. Batyrev, “Toric degenerations of Fano varieties and constructing mirror manifolds”, The Fano conference. Papers of the conference organized to commemorate the 50th anniversary of the death of Gino Fano (1871–1952) (Torino, Italy, September 29-October 5, 2002), eds. Collino Alberto et al., Università di Torino, Torino, 2004, 109–122 | MR | Zbl

[2] W. Bruns, J. Herzog, Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[3] Jheng-Jie Chen, Jungkai Chen, Meng Chen, “On quasismooth weighted complete intersections”, J. Algebr. Geom., 20:2 (2011), 239–262 | MR | Zbl

[4] A. Dimca, “Singularities and coverings of weighted complete intersections”, J. Reine Angew. Math., 366 (1986), 184–193 | MR | Zbl

[5] I. Dolgachev, “Weighted projective varieties”, Group Actions and Vector Fields, Proc. Pol.-North Am. Semin. (Vancouver, 1981), Lecture Notes in Mathematics, 956, eds. Carrell J.B., Springer, Berlin, 1982, 34–71 | DOI | MR | Zbl

[6] A. Givental, “A mirror theorem for toric complete intersections”, Topological field theory, primitive forms and related topics, Proceedings of the 38th Taniguchi symposium (Kyoto, Japan, December 9-13, 1996), eds. Kashiwara Masaki et al., Birkhäuser, Boston, 1998, 141–175 | DOI | MR | Zbl

[7] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, New York etc., 1983 | MR | Zbl

[8] A.R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit dirational geometry of 3-folds, Lond. Math. Soc. Lect. Note Ser., 281, eds. Corti Alessio et al., Cambridge University Press, Cambridge, 2000, 101–173 | MR | Zbl

[9] N. Ilten, J. Lewis, V. Przyjalkowski, “Toric degenerations of Fano threefolds giving weak Landau–Ginzburg models”, J. Algebra, 374 (2013), 104–121 | DOI | MR | Zbl

[10] M. Ovcharenko, “The classification of smooth well-formed Fano weighted complete intersections”, Int. J. Math., 34:11 (2023), 2350064 | DOI | MR | Zbl

[11] V. Przyjalkowski, “Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models”, Cent. Eur. J. Math., 9:5 (2011), 972–977 | DOI | MR | Zbl

[12] V. Przyjalkowski, “Toric Landau–Ginzburg models”, Russ. Math. Surv., 73:6 (2018), 1033–1118 | DOI | Zbl

[13] V. Przyjalkowski, “On singular log Calabi-Yau compactifications of Landau-Ginzburg models”, Sb. Math., 213:1 (2022), 88–108 | DOI | MR | Zbl

[14] V. Przyjalkowski, C. Shramov, Weighted complete intersections, In preparation

[15] V. Przyjalkowski, C. Shramov, “Nef partitions for codimension 2 weighted complete intersections”, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 19:3 (2019), 827–845 | MR | Zbl

[16] V. Przyjalkowski, C. Shramov, “Bounds for smooth Fano weighted complete intersections”, Commun. Number Theory Phys., 14:3 (2020), 511–553 | DOI | MR | Zbl

[17] V. Przyjalkowski, C. Shramov, “Fano weighted complete intersections of large codimension”, Sib. Math. J., 61:2 (2020), 298–303 | DOI | MR | Zbl

[18] V. Przyjalkowski, C. Shramov, “On automorphisms of quasi-smooth weighted complete intersections”, Sb. Math., 212:3 (2021), 374–388 | DOI | MR | Zbl

[19] M. Pizzato, T. Sano, L. Tasin, “Effective nonvanishing for Fano weighted complete intersections”, Algebra Number Theory, 11:10 (2017), 2369–2395 | DOI | MR | Zbl