Simple Novikov--Poisson algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1396-1404.

Voir la notice de l'article provenant de la source Math-Net.Ru

We proved if $A$ is a simple Novikov — Poisson (super)algebra then their Novikov part is a simple algebra when field characteristic is not 2. Also we obtained all finite dimension simple Novikov — Poisson algebras over a field of characteristic not $2$.
Keywords: Novikov (super)algebra, differential algebra, commutative algebra, simple algebra.
Mots-clés : Novikov — Poisson (super)algebra
@article{SEMR_2023_20_2_a18,
     author = {A. S. Zakharov},
     title = {Simple {Novikov--Poisson} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1396--1404},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a18/}
}
TY  - JOUR
AU  - A. S. Zakharov
TI  - Simple Novikov--Poisson algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1396
EP  - 1404
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a18/
LA  - ru
ID  - SEMR_2023_20_2_a18
ER  - 
%0 Journal Article
%A A. S. Zakharov
%T Simple Novikov--Poisson algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1396-1404
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a18/
%G ru
%F SEMR_2023_20_2_a18
A. S. Zakharov. Simple Novikov--Poisson algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1396-1404. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a18/

[1] I.M. Gel'fand, I.Ya. Dorfman, “Hamiltonian operators and algebraic structures related to them”, Funct. Anal. Appl., 13 (1980), 248–262 | DOI | MR | Zbl

[2] A.A. Balinskii, S.P. Novikov, “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras”, Sov. Math., Dokl., 32 (1985), 228–231 | MR | Zbl

[3] E.I. Zel'manov, “On a class of local translation invariant Lie algebras”, Sov. Math., Dokl., 35 (1987), 216–218 | Zbl

[4] V.T. Filippov, “A class of simple nonassociative algebras”, Math. Notes, 45:1-2 (1989), 68–71 | DOI | MR | Zbl

[5] J.M. Osborn, “Modules for Novikov algebras”, Second international conference on algebra dedicated to the memory of A. I. Shirshov, Proceedings of the conference on algebra (August 20-25, 1991, Barnaul, Russia), Contemp. Math., 184, eds. Bokut' L.A. et al., AMS, Providence, 1991, 327–338 | DOI | MR | Zbl

[6] J.M. Osborn, “Novikov algebras”, Nova J. Algebra Geom., 1:1 (1992), 1–13 | MR | Zbl

[7] J.M. Osborn, “Simple Novikov algebra with an idempotent”, Commun. Algebra, 20:9 (1992), 2729–2753 | DOI | MR | Zbl

[8] X. Xu, “On simple Novikov algebras and their irreducible modules”, J. Algebra, 185:3 (1996), 905–934 | DOI | MR | Zbl

[9] X. Xu, “Novikov-Poisson algebra”, J. Algebra, 190:2 (1997), 253–279 | DOI | MR | Zbl

[10] V.N. Zhelyabin, A.S. Tikhov, “Novikov-Poisson algebras and associative commutative derivation algebras”, Algebra Logic, 47:2 (2008), 107–117 | DOI | MR | Zbl

[11] A.S. Zakharov, “Novikov-Poisson algebras and superalgebras of Jordan brackets”, Commun. Algebra, 42:5 (2014), 2285–2298 | DOI | MR | Zbl

[12] E.C. Posner, “Differentiably simple rings”, Proc. Am. Math. Soc., 11 (1960), 337–343 | DOI | MR | Zbl

[13] R.E. Block, “Determination of the differentiably simple rings with a minimal ideal”, Ann. Math. (2), 90 (1969), 433–459 | DOI | MR | Zbl

[14] Dong Liu, Yufeng Pei, Li-meng Xia, “On finite dimensional simple Novikov superalgebras”, Commun. Algebra, 47:3 (2019), 999–1004 | DOI | MR | Zbl