Linear step-like logic of knowledge $\mathcal{LTK}.{sl}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1361-1373

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proposes a description of linear multi-agent logic of knowledge $\mathcal{LTK}.{sl}$ that models a linear non-reflexive non-transitive (step-like) temporal process of transition between information clusters — time points. Using modified techniques, we proved the finite approximability of logic. We proposed an approach for solving the main unification problem in logics of a step-like temporal relation. The projectivity and, as a consequence, unitary type of unification in logic are proved.
Keywords: modal logics, temporal logics, finite model property, linear time, Kripke relational semantics, multi-agent logic
Mots-clés : unification.
@article{SEMR_2023_20_2_a15,
     author = {S. I. Bashmakov and T. Yu. Zvereva},
     title = {Linear step-like logic of knowledge $\mathcal{LTK}.{sl}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1361--1373},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a15/}
}
TY  - JOUR
AU  - S. I. Bashmakov
AU  - T. Yu. Zvereva
TI  - Linear step-like logic of knowledge $\mathcal{LTK}.{sl}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1361
EP  - 1373
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a15/
LA  - ru
ID  - SEMR_2023_20_2_a15
ER  - 
%0 Journal Article
%A S. I. Bashmakov
%A T. Yu. Zvereva
%T Linear step-like logic of knowledge $\mathcal{LTK}.{sl}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1361-1373
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a15/
%G ru
%F SEMR_2023_20_2_a15
S. I. Bashmakov; T. Yu. Zvereva. Linear step-like logic of knowledge $\mathcal{LTK}.{sl}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1361-1373. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a15/