Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a15, author = {S. I. Bashmakov and T. Yu. Zvereva}, title = {Linear step-like logic of knowledge $\mathcal{LTK}.{sl}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1361--1373}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a15/} }
TY - JOUR AU - S. I. Bashmakov AU - T. Yu. Zvereva TI - Linear step-like logic of knowledge $\mathcal{LTK}.{sl}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1361 EP - 1373 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a15/ LA - ru ID - SEMR_2023_20_2_a15 ER -
S. I. Bashmakov; T. Yu. Zvereva. Linear step-like logic of knowledge $\mathcal{LTK}.{sl}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1361-1373. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a15/
[1] Yu.G. Karpov, Model Checking. Verification of parallel and distributed software systems, BHV-Peterburg, Saint Petersburg, 2010
[2] A.V. Kudinov, I.B. Shapirovsky, “Partitioning Kripke frames of finite height”, Izv. Math., 81:3 (2017), 592–617 | DOI | MR | Zbl
[3] V.V. Rybakov, “Nontransitive temporal multiagent logic, information and knowledge, deciding algorithms”, Sib. Math. J., 58:5 (2017), 875–886 | DOI | MR | Zbl
[4] I.B. Shapirovsky, V.B. Shehtman, “Modern modal logic: between mathematics and computer science”, Modern logic: foundations, subject and prospects of development, ID Forum (Moscow, 2018), ed. Zaitsev D.V., 265–305 http://logic.math.msu.ru/wp-content/uploads/shehtman/shsh.pdf
[5] S.I. Bashmakov, “Unification in linear modal logic on non-transitive time with the universal modality”, J. Sib. Fed. Univ. Math. Phys., 11:1 (2018), 3–9 | DOI | MR | Zbl
[6] S.I. Bashmakov, “Unification in pretabular extensions of S4”, Log. Univers., 15:3 (2021), 381–397 | DOI | MR | Zbl
[7] S.I. Bashmakov, T.Yu. Zvereva, “Unification and finite model property for linear step-like temporal multi-agent logic with the universal modality”, Bulletin of the Section of Logic, 51:3 (2022), 345–361 | DOI | MR
[8] A. Chagrov, M. Zacharyaschev, Modal logic, Oxford University Press, Oxford, 1997 | MR | Zbl
[9] W. Dzik, P. Wojtylak, “Projective unification in modal logic”, Log. J. IGPL, 20:1 (2012), 121–153 | DOI | MR | Zbl
[10] S. Ghilardi, “Unification through projectivity”, J. Logic Comput., 7:6 (1997), 733–752 | DOI | MR | Zbl
[11] S. Ghilardi, “Unification in intuitionistic logic”, J. Symb. Log., 62:2 (1999), 859–880 | DOI | MR | Zbl
[12] V. Goranko, S. Passy, “Using the universal modality: Gains and questions”, J. Log. Comput., 2:1 (1992), 5–30 | DOI | MR | Zbl
[13] A. Prior, Time and modality, Oxford University Press, Oxford, 1957 | Zbl
[14] J.A. Robinson, “A machine-oriented logic based on the resolution principle”, J. Assoc. Comput. Mach., 12 (1965), 23–41 | DOI | MR | Zbl
[15] V.V. Rybakov, “Best unifiers in transitive modal logics”, Stud. Log., 99:1-3 (2011), 321–336 | DOI | MR | Zbl
[16] V.V. Rybakov, “Non-transitive linear temporal logic and logical knowledge operations”, J. Log. Comput., 26:3 (2016), 945–958 | DOI | MR | Zbl
[17] R. van der Meyden, Ks. Wong, “Complete axiomatizations for reasoning about knowledge and branching time”, Stud. Log., 75:1 (2003), 93–123 | DOI | MR | Zbl