Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a14, author = {M. V. Korovina and O. V. Kudinov}, title = {On the computability of ordered fields}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1341--1360}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a14/} }
M. V. Korovina; O. V. Kudinov. On the computability of ordered fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1341-1360. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a14/
[1] P.E. Alaev, “Computable homogeneous Boolean algebras and a metatheorem”, Algebra Logic, 43:2 (2004), 73–87 | DOI | MR | Zbl
[2] M.M. Arslanov, Local theory of degrees of unsolvability and $\Delta^0_2$-sets, Kazan' University Press, Kazan', 1987 | MR | Zbl
[3] M.M. Arslanov, “On some generalisations of a fixed point theorem”, Sov. Math., 25:5 (1981), 1–10 | MR | Zbl
[4] A. Cobham, “The intrinsic computational difficulty of functions”, Logic, Methodology and Philosophy of Science, Proceedings of the 1964 International Congress, ed. Y. Bar-Hillel, North Holland, Amsterdam, 1964, 24–30 | MR
[5] Yu.L. Ershov, Decision problems and constructivizable models, Nauka, M., 1980 | MR | Zbl
[6] Yu.L. Ershov, “Theory of numberings”, Handbook of computability theory, ed. E.R. Griffor, Elsevier, Amsterdam, 1999, 473–503 | DOI | MR | Zbl
[7] Yu.L. Ershov, S.S. Goncharov, Constructive models, Consultants Bureau, New York, 2000 | MR | Zbl
[8] S.S. Goncharov, Countable Boolean algebras and decidability, Plenum, New York, 1997 | MR | Zbl
[9] A. Grzegorczyk, Some classes of recursive functions, Rozprawy Mathemaczne IV, Warszawa, 1953 | MR | Zbl
[10] N. Khisamiev, “Constructive abelian groups”, Handbook of recursive mathematics, v. 2, Stud. Logic Found. Math., 139, eds. Ershov Yu. L. et al., Elsevier, Amsterdam, 1998, 1177–1231 | DOI | MR | Zbl
[11] Ker-I, Ko, Complexity theory of real functions, Birkhäuser, Boston etc., 1991 | MR | Zbl
[12] M. Korovina, O. Kudinov, “Spectrum of the field of computable real numbers”, Algebra Logic, 55:6 (2017), 485–500 | DOI | MR | Zbl
[13] M. Korovina, O. Kudinov, “The uniformity principle for $\Sigma$-definability”, J. Log. Comput., 19:1 (2009), 159–174 | DOI | MR | Zbl
[14] A.I. Mal'cev, “Constructive algebras”, Russ. Math. Surv., 16:3 (1961), 77–129 | DOI | Zbl
[15] M. Miller, V. Ocasio González, “Degree spectra of real closed fields”, Arch. Math. Logic, 58:3-4 (2019), 387–411 | DOI | MR | Zbl
[16] A.S. Morozov, “Countable homogeneous Boolean algebras”, Algebra Logic, 21 (1983), 181–190 | DOI | MR | Zbl
[17] M.O. Rabin, “Computable algebra, general theory and theory of computable fields”, Trans. Am. Math. Soc., 95:2 (1960), 341–360 | MR | Zbl
[18] R.W. Ritchie, “Classes of predictably computable functions”, Trans. Am. Math. Soc., 106 (1963), 139–173 | DOI | MR | Zbl
[19] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, Maidenhead, Berksh, 1967 | MR | Zbl
[20] J.R. Shoenfield, Degrees of unsolvability, North-Holland Publ., Amsterdam-London, 1971 | MR | Zbl
[21] R.M. Smullyan, Theory of formal systems, Annals of Mathematics Studies, 47, Princeton University Press, Princeton, 1961 | MR | Zbl
[22] R.I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Springer, Berlin etc, 1987 | MR | Zbl
[23] K. Weihrauch, Computable analysis. An introduction, Springer, Berlin, 2000 | MR | Zbl