On positive completeness and positively closed sets of multifunctions of rank~$2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1313-1319.

Voir la notice de l'article provenant de la source Math-Net.Ru

In article the problem of expressibility of multifunctions of rank $2$ by positive closure operator is considered. A necessary and sufficient condition for the positive completeness of an arbitrary set of multifunctions and all positively closed sets of multifunctions are found.
Keywords: multifunction, positive closure, completeness, $k$-valued logic.
Mots-clés : superposition
@article{SEMR_2023_20_2_a13,
     author = {I. K. Sharankhaev},
     title = {On positive completeness and positively closed sets of multifunctions of rank~$2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1313--1319},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a13/}
}
TY  - JOUR
AU  - I. K. Sharankhaev
TI  - On positive completeness and positively closed sets of multifunctions of rank~$2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1313
EP  - 1319
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a13/
LA  - ru
ID  - SEMR_2023_20_2_a13
ER  - 
%0 Journal Article
%A I. K. Sharankhaev
%T On positive completeness and positively closed sets of multifunctions of rank~$2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1313-1319
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a13/
%G ru
%F SEMR_2023_20_2_a13
I. K. Sharankhaev. On positive completeness and positively closed sets of multifunctions of rank~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1313-1319. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a13/

[1] E.L. Post, “Introduction to a general theory of elementary propositions”, American J., 43:4 (1921), 163–185 | MR | Zbl

[2] S.S. Marchenkov, Closed classes of Boolean functions, Nauka, Fizmatlit, M., 2000 | MR | Zbl

[3] S.S. Marchenkov, “A criterion for positive completeness in ternary logic”, J. Appl. Ind. Math., 1:4 (2007), 481–488 | DOI | MR | Zbl

[4] S.S. Marchenkov, A.A. Popova, “Positively closed classes of partial Boolean functions”, Mosc. Univ. Comput. Math. Cybern., 32:3 (2008), 147–151 | DOI | MR | Zbl

[5] S.S. Marchenkov, “Positively closed classes of three-valued logic”, J. Appl. Ind. Math., 8:2 (2014), 256–266 | DOI | MR | Zbl

[6] L.V. Riabets, “Operators of parametric and positive closure on the set of hyperfunctions of rank 2”, Intelligent systems. Theory and applications, 20:3 (2016), 79–84

[7] V.I. Panteleyev, E.S. Taglasov, “$ES_I$–closure of rank 2 multi-functions: completeness criterion, classification and types of bases”, Intelligent systems. Theory and applications, 25:2 (2021), 55–80

[8] L.V. Riabets, “Parametric closed classes of hyperfunctions on two-element set”, Bulletin of Irkutsk State University. Series Mathematics, 17 (2016), 46–61

[9] V.I. Panteleyev, “A completeness criterion for underdetermined partial Boolean functions”, Vestn. Novosib. Gos. Univ. Ser. Mat. Mech., Inform., 9:3 (2009), 95–114 | Zbl