Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a13, author = {I. K. Sharankhaev}, title = {On positive completeness and positively closed sets of multifunctions of rank~$2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1313--1319}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a13/} }
TY - JOUR AU - I. K. Sharankhaev TI - On positive completeness and positively closed sets of multifunctions of rank~$2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1313 EP - 1319 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a13/ LA - ru ID - SEMR_2023_20_2_a13 ER -
I. K. Sharankhaev. On positive completeness and positively closed sets of multifunctions of rank~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1313-1319. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a13/
[1] E.L. Post, “Introduction to a general theory of elementary propositions”, American J., 43:4 (1921), 163–185 | MR | Zbl
[2] S.S. Marchenkov, Closed classes of Boolean functions, Nauka, Fizmatlit, M., 2000 | MR | Zbl
[3] S.S. Marchenkov, “A criterion for positive completeness in ternary logic”, J. Appl. Ind. Math., 1:4 (2007), 481–488 | DOI | MR | Zbl
[4] S.S. Marchenkov, A.A. Popova, “Positively closed classes of partial Boolean functions”, Mosc. Univ. Comput. Math. Cybern., 32:3 (2008), 147–151 | DOI | MR | Zbl
[5] S.S. Marchenkov, “Positively closed classes of three-valued logic”, J. Appl. Ind. Math., 8:2 (2014), 256–266 | DOI | MR | Zbl
[6] L.V. Riabets, “Operators of parametric and positive closure on the set of hyperfunctions of rank 2”, Intelligent systems. Theory and applications, 20:3 (2016), 79–84
[7] V.I. Panteleyev, E.S. Taglasov, “$ES_I$–closure of rank 2 multi-functions: completeness criterion, classification and types of bases”, Intelligent systems. Theory and applications, 25:2 (2021), 55–80
[8] L.V. Riabets, “Parametric closed classes of hyperfunctions on two-element set”, Bulletin of Irkutsk State University. Series Mathematics, 17 (2016), 46–61
[9] V.I. Panteleyev, “A completeness criterion for underdetermined partial Boolean functions”, Vestn. Novosib. Gos. Univ. Ser. Mat. Mech., Inform., 9:3 (2009), 95–114 | Zbl