On positive completeness and positively closed sets of multifunctions of rank~$2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1313-1319
Voir la notice de l'article provenant de la source Math-Net.Ru
In article the problem of expressibility of multifunctions of rank $2$ by positive closure operator is considered. A necessary and sufficient condition for the positive completeness of an arbitrary set of multifunctions and all positively closed sets of multifunctions are found.
Keywords:
multifunction, positive closure, completeness, $k$-valued logic.
Mots-clés : superposition
Mots-clés : superposition
@article{SEMR_2023_20_2_a13,
author = {I. K. Sharankhaev},
title = {On positive completeness and positively closed sets of multifunctions of rank~$2$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1313--1319},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a13/}
}
TY - JOUR AU - I. K. Sharankhaev TI - On positive completeness and positively closed sets of multifunctions of rank~$2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1313 EP - 1319 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a13/ LA - ru ID - SEMR_2023_20_2_a13 ER -
I. K. Sharankhaev. On positive completeness and positively closed sets of multifunctions of rank~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1313-1319. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a13/