On equivalence classes of matrices over a finite field of odd characteristic
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1200-1210

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we classified up to isomorphism all finite local rings $R$ with Jacobson radical $J$ and conditions: $$\mathrm{char} R\neq 2,\ R/J=F\subseteq Z(R),\ {\dim_F J/J^2=2},\ {\dim_F J^2=3},\ {J^3=0}.$$
Keywords: finite rings, local rings.
@article{SEMR_2023_20_2_a12,
     author = {E. V. Zhuravlev},
     title = {On equivalence classes of matrices over a finite field of odd characteristic},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1200--1210},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a12/}
}
TY  - JOUR
AU  - E. V. Zhuravlev
TI  - On equivalence classes of matrices over a finite field of odd characteristic
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1200
EP  - 1210
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a12/
LA  - ru
ID  - SEMR_2023_20_2_a12
ER  - 
%0 Journal Article
%A E. V. Zhuravlev
%T On equivalence classes of matrices over a finite field of odd characteristic
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1200-1210
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a12/
%G ru
%F SEMR_2023_20_2_a12
E. V. Zhuravlev. On equivalence classes of matrices over a finite field of odd characteristic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1200-1210. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a12/