On equivalence classes of matrices over a finite field of odd characteristic
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1200-1210
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we classified up to isomorphism all finite local rings $R$ with Jacobson radical $J$ and conditions: $$\mathrm{char} R\neq 2,\ R/J=F\subseteq Z(R),\ {\dim_F J/J^2=2},\ {\dim_F J^2=3},\ {J^3=0}.$$
Keywords:
finite rings, local rings.
@article{SEMR_2023_20_2_a12,
author = {E. V. Zhuravlev},
title = {On equivalence classes of matrices over a finite field of odd characteristic},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1200--1210},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a12/}
}
TY - JOUR AU - E. V. Zhuravlev TI - On equivalence classes of matrices over a finite field of odd characteristic JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1200 EP - 1210 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a12/ LA - ru ID - SEMR_2023_20_2_a12 ER -
E. V. Zhuravlev. On equivalence classes of matrices over a finite field of odd characteristic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1200-1210. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a12/