Mots-clés : simple group
@article{SEMR_2023_20_2_a10,
author = {N. V. Maslova},
title = {Finite simple groups with two maximal subgroups of coprime orders},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1150--1159},
year = {2023},
volume = {20},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a10/}
}
N. V. Maslova. Finite simple groups with two maximal subgroups of coprime orders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1150-1159. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a10/
[1] M. Aschbacher, “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl
[2] V.A. Belonogov, “On maximal subgroups. II”, Izv. Vyssh. Uchebn. Zaved. Mat., 5 (1962), 3–11 | MR | Zbl
[3] J.N. Bray, D.F. Holt, C.M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013 | MR | Zbl
[4] J.H. Conway, et al., Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[5] F. Gross, “Conjugacy of odd order Hall subgroups”, Bull. Lond. Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl
[6] P.B. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, Cambridge University Press, Cambridge etc, 1990 | MR | Zbl
[7] M. Liebeck, J. Saxl, “On point stabilizers in primitive permutation groups”, Commun. Algebra, 19:10 (1991), 2777–2786 | DOI | MR | Zbl
[8] R.A. Wilson et. al., Atlas of finite group representations, https://brauer.maths.qmul.ac.uk/Atlas/v3/
[9] R.A. Wilson, “The odd-local subgroups of the Monster”, J. Aust. Math. Soc., Ser. A, 44:1 (1988), 1–16 | DOI | MR | Zbl
[10] R.A. Wilson, “The maximal subgroups of the Baby Monster, I”, J. Algebra, 211 (1999), 1–14 | DOI | MR | Zbl