Finite simple groups with two maximal subgroups of coprime orders
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1150-1159
Voir la notice de l'article provenant de la source Math-Net.Ru
In 1962, V. A. Belonogov proved that if a finite group $G$ contains two maximal subgroups of coprime orders, then either $G$ is one of known solvable groups or $G$ is simple. In this short note based on results by M. Liebeck and J. Saxl on odd order maximal subgroups in finite simple groups we determine possibilities for triples $(G,H,M)$, where $G$ is a finite nonabelian simple group, $H$ and $M$ are maximal subgroups of $G$ with $(|H|,|M|)=1$.
Keywords:
finite group, maximal subgroup, subgroups of coprime orders.
Mots-clés : simple group
Mots-clés : simple group
@article{SEMR_2023_20_2_a10,
author = {N. V. Maslova},
title = {Finite simple groups with two maximal subgroups of coprime orders},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1150--1159},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a10/}
}
TY - JOUR AU - N. V. Maslova TI - Finite simple groups with two maximal subgroups of coprime orders JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 1150 EP - 1159 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a10/ LA - en ID - SEMR_2023_20_2_a10 ER -
N. V. Maslova. Finite simple groups with two maximal subgroups of coprime orders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1150-1159. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a10/