Finite simple groups with two maximal subgroups of coprime orders
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1150-1159

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1962, V. A. Belonogov proved that if a finite group $G$ contains two maximal subgroups of coprime orders, then either $G$ is one of known solvable groups or $G$ is simple. In this short note based on results by M. Liebeck and J. Saxl on odd order maximal subgroups in finite simple groups we determine possibilities for triples $(G,H,M)$, where $G$ is a finite nonabelian simple group, $H$ and $M$ are maximal subgroups of $G$ with $(|H|,|M|)=1$.
Keywords: finite group, maximal subgroup, subgroups of coprime orders.
Mots-clés : simple group
@article{SEMR_2023_20_2_a10,
     author = {N. V. Maslova},
     title = {Finite simple groups with two maximal subgroups of coprime orders},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1150--1159},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a10/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - Finite simple groups with two maximal subgroups of coprime orders
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1150
EP  - 1159
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a10/
LA  - en
ID  - SEMR_2023_20_2_a10
ER  - 
%0 Journal Article
%A N. V. Maslova
%T Finite simple groups with two maximal subgroups of coprime orders
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1150-1159
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a10/
%G en
%F SEMR_2023_20_2_a10
N. V. Maslova. Finite simple groups with two maximal subgroups of coprime orders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1150-1159. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a10/