Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a0, author = {I. M. Buchinskiy and A. V. Treyer}, title = {On graphs that are not equationally {Noetherian}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {580--587}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a0/} }
TY - JOUR AU - I. M. Buchinskiy AU - A. V. Treyer TI - On graphs that are not equationally Noetherian JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 580 EP - 587 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a0/ LA - ru ID - SEMR_2023_20_2_a0 ER -
I. M. Buchinskiy; A. V. Treyer. On graphs that are not equationally Noetherian. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 580-587. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a0/
[1] E. Daniyarova, A. Myasnikov, V. Remeslennikov, Algebraic geometry over algebraic systems, Publishing House of SB RAS, Novosibirsk, 2016
[2] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups. A Festschrift in honor of Anthony Gaglione, eds. Fine Benjamin et al., World Scientific, Hackensack, 2008, 80–111 | DOI | MR | Zbl
[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures. II: Foundations”, J. Math. Sci., New York, 185:3 (2012), 389–416 | DOI | MR | Zbl
[4] G. Baumslag, A. Myasnikov, V. Roman'kov, “Two theorems about equationally Noetherian groups”, J. Algebra, 194:2 (1997), 654–664 | DOI | MR | Zbl
[5] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl
[6] M. Shahryary, A. Shevlyakov, “Direct products, varieties, and compactness conditions”, Groups Complex. Cryptol., 9:2 (2017), 159–166 | MR | Zbl
[7] Ch.K. Gupta, N.S. Romanovskii, “The property of being equationally Noetherian for some soluble groups”, Algebra Logic, 46:1 (2007), 28–36 | DOI | MR | Zbl
[8] M.V. Kotov, “Several remarks on equationally Noetherian property”, Vestnik Omskogo universiteta, 2013:2 (2013), 24–28
[9] R. Diestel, Graph theory, Springer, Berlin, 1996 | MR | Zbl
[10] N.G. de Bruijn, P. Erdős, “A colour problem for infinite graphs and a problem in the theory of relations”, Nederl. Akad. Wet., Proc., Ser. A, 54 (1951), 371–373 | MR | Zbl