On graphs that are not equationally Noetherian
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 580-587 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The goal of the paper is to describe all equationally noetherian graphs in terms of forbidden subgraphs for the categories of simple graphs and graphs with loops.
Keywords: simple graphs, graphs with loops, graph groups, equationally noetherian
Mots-clés : one variable equations.
@article{SEMR_2023_20_2_a0,
     author = {I. M. Buchinskiy and A. V. Treyer},
     title = {On graphs that are not equationally {Noetherian}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {580--587},
     year = {2023},
     volume = {20},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a0/}
}
TY  - JOUR
AU  - I. M. Buchinskiy
AU  - A. V. Treyer
TI  - On graphs that are not equationally Noetherian
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 580
EP  - 587
VL  - 20
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a0/
LA  - ru
ID  - SEMR_2023_20_2_a0
ER  - 
%0 Journal Article
%A I. M. Buchinskiy
%A A. V. Treyer
%T On graphs that are not equationally Noetherian
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 580-587
%V 20
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a0/
%G ru
%F SEMR_2023_20_2_a0
I. M. Buchinskiy; A. V. Treyer. On graphs that are not equationally Noetherian. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 580-587. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a0/

[1] E. Daniyarova, A. Myasnikov, V. Remeslennikov, Algebraic geometry over algebraic systems, Publishing House of SB RAS, Novosibirsk, 2016

[2] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups. A Festschrift in honor of Anthony Gaglione, eds. Fine Benjamin et al., World Scientific, Hackensack, 2008, 80–111 | DOI | MR | Zbl

[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures. II: Foundations”, J. Math. Sci., New York, 185:3 (2012), 389–416 | DOI | MR | Zbl

[4] G. Baumslag, A. Myasnikov, V. Roman'kov, “Two theorems about equationally Noetherian groups”, J. Algebra, 194:2 (1997), 654–664 | DOI | MR | Zbl

[5] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[6] M. Shahryary, A. Shevlyakov, “Direct products, varieties, and compactness conditions”, Groups Complex. Cryptol., 9:2 (2017), 159–166 | MR | Zbl

[7] Ch.K. Gupta, N.S. Romanovskii, “The property of being equationally Noetherian for some soluble groups”, Algebra Logic, 46:1 (2007), 28–36 | DOI | MR | Zbl

[8] M.V. Kotov, “Several remarks on equationally Noetherian property”, Vestnik Omskogo universiteta, 2013:2 (2013), 24–28

[9] R. Diestel, Graph theory, Springer, Berlin, 1996 | MR | Zbl

[10] N.G. de Bruijn, P. Erdős, “A colour problem for infinite graphs and a problem in the theory of relations”, Nederl. Akad. Wet., Proc., Ser. A, 54 (1951), 371–373 | MR | Zbl