On graphs that are not equationally Noetherian
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 580-587
Voir la notice de l'article provenant de la source Math-Net.Ru
The goal of the paper is to describe all equationally noetherian graphs in terms of forbidden subgraphs for the categories of simple graphs and graphs with loops.
Keywords:
simple graphs, graphs with loops, graph groups, equationally noetherian
Mots-clés : one variable equations.
Mots-clés : one variable equations.
@article{SEMR_2023_20_2_a0,
author = {I. M. Buchinskiy and A. V. Treyer},
title = {On graphs that are not equationally {Noetherian}},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {580--587},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a0/}
}
TY - JOUR AU - I. M. Buchinskiy AU - A. V. Treyer TI - On graphs that are not equationally Noetherian JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 580 EP - 587 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a0/ LA - ru ID - SEMR_2023_20_2_a0 ER -
I. M. Buchinskiy; A. V. Treyer. On graphs that are not equationally Noetherian. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 580-587. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a0/