Undecidability of the submonoid membership problem for a sufficiently large finite direct power of the Heisenberg group
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 293-305
Voir la notice de l'article provenant de la source Math-Net.Ru
The submonoid membership problem for a finitely generated group $G$ is the decision problem, where for a given finitely generated submonoid $M$ of $G$ and a group element $g$ it is asked whether $g \in M$. In this paper, we prove that for a sufficiently large direct power $\mathbb{H}^n$ of the Heisenberg group $\mathbb{H}$, there exists a finitely generated submonoid $M$ whose membership problem is algorithmically unsolvable. Thus, an answer is given to the question of M. Lohrey and B. Steinberg about the existence of a finitely generated nilpotent group with an unsolvable submonoid membership problem. It also answers the question of T. Colcombet, J. Ouaknine, P. Semukhin and J. Worrell about the existence of such a group in the class of direct powers of the Heisenberg group. This result implies the existence of a similar submonoid in any free nilpotent group $N_{k,c}$ of sufficiently large rank $k$ of the class $c\geq 2$. The proofs are based on the undecidability of Hilbert's 10th problem and interpretation of Diophantine equations in nilpotent groups.
Keywords:
nilpotent group, Heisenberg group, direct product, submonoid membership problem, rational set, decidability, Hilbert's 10th problem, interpretability of Diophantine equations in groups.
@article{SEMR_2023_20_1_a9,
author = {V. A. Roman'kov},
title = {Undecidability of the submonoid membership problem for a sufficiently large finite direct power of the {Heisenberg} group},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {293--305},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a9/}
}
TY - JOUR AU - V. A. Roman'kov TI - Undecidability of the submonoid membership problem for a sufficiently large finite direct power of the Heisenberg group JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 293 EP - 305 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a9/ LA - en ID - SEMR_2023_20_1_a9 ER -
%0 Journal Article %A V. A. Roman'kov %T Undecidability of the submonoid membership problem for a sufficiently large finite direct power of the Heisenberg group %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 293-305 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a9/ %G en %F SEMR_2023_20_1_a9
V. A. Roman'kov. Undecidability of the submonoid membership problem for a sufficiently large finite direct power of the Heisenberg group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 293-305. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a9/