On two intervals in the lattice of partial ultraclones of rank~$2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 262-274
Voir la notice de l'article provenant de la source Math-Net.Ru
In article the intervals in the lattice of partial ultraclones of rank $2$ are considered. The well-known classes of all monotone $M$ and all self-dual $S$ Boolean functions are partial ultraclones of rank $2$. We proved that each of the intervals $\Im (M, M_2)$ and $\Im (S, M_2)$, where $M_2$ is complete partial ultraclone of rank $2$, is finite.
Keywords:
multifunction, Boolean function, monotone function, self-dual function, closed set, clone, partial ultraclone, lattice, interval of lattice.
Mots-clés : superposition
Mots-clés : superposition
@article{SEMR_2023_20_1_a8,
author = {S. A. Badmaev and A. E. Dugarov and I. V. Fomina and I. K. Sharankhaev},
title = {On two intervals in the lattice of partial ultraclones of rank~$2$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {262--274},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/}
}
TY - JOUR AU - S. A. Badmaev AU - A. E. Dugarov AU - I. V. Fomina AU - I. K. Sharankhaev TI - On two intervals in the lattice of partial ultraclones of rank~$2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 262 EP - 274 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/ LA - ru ID - SEMR_2023_20_1_a8 ER -
%0 Journal Article %A S. A. Badmaev %A A. E. Dugarov %A I. V. Fomina %A I. K. Sharankhaev %T On two intervals in the lattice of partial ultraclones of rank~$2$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 262-274 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/ %G ru %F SEMR_2023_20_1_a8
S. A. Badmaev; A. E. Dugarov; I. V. Fomina; I. K. Sharankhaev. On two intervals in the lattice of partial ultraclones of rank~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 262-274. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/