Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a8, author = {S. A. Badmaev and A. E. Dugarov and I. V. Fomina and I. K. Sharankhaev}, title = {On two intervals in the lattice of partial ultraclones of rank~$2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {262--274}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/} }
TY - JOUR AU - S. A. Badmaev AU - A. E. Dugarov AU - I. V. Fomina AU - I. K. Sharankhaev TI - On two intervals in the lattice of partial ultraclones of rank~$2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 262 EP - 274 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/ LA - ru ID - SEMR_2023_20_1_a8 ER -
%0 Journal Article %A S. A. Badmaev %A A. E. Dugarov %A I. V. Fomina %A I. K. Sharankhaev %T On two intervals in the lattice of partial ultraclones of rank~$2$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 262-274 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/ %G ru %F SEMR_2023_20_1_a8
S. A. Badmaev; A. E. Dugarov; I. V. Fomina; I. K. Sharankhaev. On two intervals in the lattice of partial ultraclones of rank~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 262-274. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/
[1] E.L. Post, “Introduction to a general theory of elementary propositions”, Amer.J. Math., 43:4 (1921), 163–185 | DOI | MR | Zbl
[2] V.B. Alekseev, A.A. Voronenko, “On some closed classes in partial two-valued logic”, Discrete Math. Appl., 4:5 (1994), 401–419 | DOI | MR | Zbl
[3] V.I. Panteleyev, S.Yu. Khaltanova, “About some intervals in the lattic of clones of partial ultrafunctions”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 3:4 (2010), 80–87 | Zbl
[4] S.A. Badmaev, A.E. Dugarov, I.V. Fomina, I.K. Sharankhaev, “On some intervals in the lattice of ultraclones of rank 2”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1210–1218 | DOI | MR | Zbl
[5] V.I. Panteleyev, “Criteria of completeness for redefining Boolean functions”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2009:2 (2009), 60–79 | Zbl
[6] S.A. Badmaev, “A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2”, Sib. Èlektron. Mat. Izv., 15 (2018), 450–474 | MR | Zbl