On two intervals in the lattice of partial ultraclones of rank~$2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 262-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

In article the intervals in the lattice of partial ultraclones of rank $2$ are considered. The well-known classes of all monotone $M$ and all self-dual $S$ Boolean functions are partial ultraclones of rank $2$. We proved that each of the intervals $\Im (M, M_2)$ and $\Im (S, M_2)$, where $M_2$ is complete partial ultraclone of rank $2$, is finite.
Keywords: multifunction, Boolean function, monotone function, self-dual function, closed set, clone, partial ultraclone, lattice, interval of lattice.
Mots-clés : superposition
@article{SEMR_2023_20_1_a8,
     author = {S. A. Badmaev and A. E. Dugarov and I. V. Fomina and I. K. Sharankhaev},
     title = {On two intervals in the lattice of partial ultraclones of rank~$2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {262--274},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/}
}
TY  - JOUR
AU  - S. A. Badmaev
AU  - A. E. Dugarov
AU  - I. V. Fomina
AU  - I. K. Sharankhaev
TI  - On two intervals in the lattice of partial ultraclones of rank~$2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 262
EP  - 274
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/
LA  - ru
ID  - SEMR_2023_20_1_a8
ER  - 
%0 Journal Article
%A S. A. Badmaev
%A A. E. Dugarov
%A I. V. Fomina
%A I. K. Sharankhaev
%T On two intervals in the lattice of partial ultraclones of rank~$2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 262-274
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/
%G ru
%F SEMR_2023_20_1_a8
S. A. Badmaev; A. E. Dugarov; I. V. Fomina; I. K. Sharankhaev. On two intervals in the lattice of partial ultraclones of rank~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 262-274. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/

[1] E.L. Post, “Introduction to a general theory of elementary propositions”, Amer.J. Math., 43:4 (1921), 163–185 | DOI | MR | Zbl

[2] V.B. Alekseev, A.A. Voronenko, “On some closed classes in partial two-valued logic”, Discrete Math. Appl., 4:5 (1994), 401–419 | DOI | MR | Zbl

[3] V.I. Panteleyev, S.Yu. Khaltanova, “About some intervals in the lattic of clones of partial ultrafunctions”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 3:4 (2010), 80–87 | Zbl

[4] S.A. Badmaev, A.E. Dugarov, I.V. Fomina, I.K. Sharankhaev, “On some intervals in the lattice of ultraclones of rank 2”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1210–1218 | DOI | MR | Zbl

[5] V.I. Panteleyev, “Criteria of completeness for redefining Boolean functions”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2009:2 (2009), 60–79 | Zbl

[6] S.A. Badmaev, “A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2”, Sib. Èlektron. Mat. Izv., 15 (2018), 450–474 | MR | Zbl