On two intervals in the lattice of partial ultraclones of rank~$2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 262-274

Voir la notice de l'article provenant de la source Math-Net.Ru

In article the intervals in the lattice of partial ultraclones of rank $2$ are considered. The well-known classes of all monotone $M$ and all self-dual $S$ Boolean functions are partial ultraclones of rank $2$. We proved that each of the intervals $\Im (M, M_2)$ and $\Im (S, M_2)$, where $M_2$ is complete partial ultraclone of rank $2$, is finite.
Keywords: multifunction, Boolean function, monotone function, self-dual function, closed set, clone, partial ultraclone, lattice, interval of lattice.
Mots-clés : superposition
@article{SEMR_2023_20_1_a8,
     author = {S. A. Badmaev and A. E. Dugarov and I. V. Fomina and I. K. Sharankhaev},
     title = {On two intervals in the lattice of partial ultraclones of rank~$2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {262--274},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/}
}
TY  - JOUR
AU  - S. A. Badmaev
AU  - A. E. Dugarov
AU  - I. V. Fomina
AU  - I. K. Sharankhaev
TI  - On two intervals in the lattice of partial ultraclones of rank~$2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 262
EP  - 274
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/
LA  - ru
ID  - SEMR_2023_20_1_a8
ER  - 
%0 Journal Article
%A S. A. Badmaev
%A A. E. Dugarov
%A I. V. Fomina
%A I. K. Sharankhaev
%T On two intervals in the lattice of partial ultraclones of rank~$2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 262-274
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/
%G ru
%F SEMR_2023_20_1_a8
S. A. Badmaev; A. E. Dugarov; I. V. Fomina; I. K. Sharankhaev. On two intervals in the lattice of partial ultraclones of rank~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 262-274. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a8/