Pretabularity and Craig's interpolation problem over the minimal logic
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 245-250
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper [1] the tabularity problem was solved and all pre-tabular extensions of the minimal logic were described. In total, there turned out to be seven pre-tabular logics over the minimal logic.
In this article, we will prove that four of them have the Craig's interpolation property CIP and two do not have. The question of CIP in the seventh logic is still open.
Keywords:
minimal logic, tabularity, pre-tabular logic
Mots-clés : interpolation problem.
Mots-clés : interpolation problem.
@article{SEMR_2023_20_1_a7,
author = {L. L. Maksimova and V. F. Yun},
title = {Pretabularity and {Craig's} interpolation problem over the minimal logic},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {245--250},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a7/}
}
TY - JOUR AU - L. L. Maksimova AU - V. F. Yun TI - Pretabularity and Craig's interpolation problem over the minimal logic JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 245 EP - 250 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a7/ LA - ru ID - SEMR_2023_20_1_a7 ER -
L. L. Maksimova; V. F. Yun. Pretabularity and Craig's interpolation problem over the minimal logic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 245-250. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a7/