Pretabularity and Craig's interpolation problem over the minimal logic
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 245-250

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper [1] the tabularity problem was solved and all pre-tabular extensions of the minimal logic were described. In total, there turned out to be seven pre-tabular logics over the minimal logic. In this article, we will prove that four of them have the Craig's interpolation property CIP and two do not have. The question of CIP in the seventh logic is still open.
Keywords: minimal logic, tabularity, pre-tabular logic
Mots-clés : interpolation problem.
@article{SEMR_2023_20_1_a7,
     author = {L. L. Maksimova and V. F. Yun},
     title = {Pretabularity and {Craig's} interpolation problem over the minimal logic},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {245--250},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a7/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - Pretabularity and Craig's interpolation problem over the minimal logic
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 245
EP  - 250
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a7/
LA  - ru
ID  - SEMR_2023_20_1_a7
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T Pretabularity and Craig's interpolation problem over the minimal logic
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 245-250
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a7/
%G ru
%F SEMR_2023_20_1_a7
L. L. Maksimova; V. F. Yun. Pretabularity and Craig's interpolation problem over the minimal logic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 245-250. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a7/