Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 207-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is a formally self-dual distance-regular graph $\Gamma$ with classical parameters $d=3$, $b=\alpha+1=q$, $\beta=q^2+q-1$ and intersection array $\{(q^2+q-1)(q^2+q+1),(q^2+q)q^2,q^3;1,(q^2+q),q^2(q^2+q+1)\}$. For the graph $\Gamma$ we have the strongly regular graphs $\Gamma_2$ and $\Gamma_3$ ($\Gamma_3$ is pseuqo-geometric for $pG_{q-1}(q^2+q-1,(q^2+q+1)(q-1))$). It is proved that a distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ ($q=3$) does not exist.
Keywords: distance-regular graph, formally self-dual graph, triple intersection numbers.
@article{SEMR_2023_20_1_a6,
     author = {A. A. Makhnev and M. M. Isakova and A. A. Tokbaeva},
     title = {Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {207--210},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. M. Isakova
AU  - A. A. Tokbaeva
TI  - Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 207
EP  - 210
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/
LA  - ru
ID  - SEMR_2023_20_1_a6
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. M. Isakova
%A A. A. Tokbaeva
%T Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 207-210
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/
%G ru
%F SEMR_2023_20_1_a6
A. A. Makhnev; M. M. Isakova; A. A. Tokbaeva. Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 207-210. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/

[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc, 1989 | MR | Zbl

[2] A. Jurišić, J. Vidali, “Restrictions on classical distance-regular graphs”, J. Algebr. Comb., 46:3-4 (2017), 571–588 | DOI | MR | Zbl

[3] I.N. Belousov, A.A. Makhnev, M.S. Nirova, “On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Sib. Èlektron. Mat. Izv., 16 (2019), 1385–1392 | DOI | MR | Zbl

[4] A.A. Makhnev, M.M. Isakova, A.A. Tokbaeva, “The nonexistence small Q-polynomial graphs of type (III)”, Sib. Èlektron. Mat. Izv., 17 (2020), 1270–1279 | DOI | MR | Zbl

[5] A. Jurišić, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptography, 65:1-2 (2012), 29–47 | DOI | MR | Zbl