Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a6, author = {A. A. Makhnev and M. M. Isakova and A. A. Tokbaeva}, title = {Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {207--210}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/} }
TY - JOUR AU - A. A. Makhnev AU - M. M. Isakova AU - A. A. Tokbaeva TI - Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 207 EP - 210 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/ LA - ru ID - SEMR_2023_20_1_a6 ER -
%0 Journal Article %A A. A. Makhnev %A M. M. Isakova %A A. A. Tokbaeva %T Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 207-210 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/ %G ru %F SEMR_2023_20_1_a6
A. A. Makhnev; M. M. Isakova; A. A. Tokbaeva. Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 207-210. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc, 1989 | MR | Zbl
[2] A. Jurišić, J. Vidali, “Restrictions on classical distance-regular graphs”, J. Algebr. Comb., 46:3-4 (2017), 571–588 | DOI | MR | Zbl
[3] I.N. Belousov, A.A. Makhnev, M.S. Nirova, “On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Sib. Èlektron. Mat. Izv., 16 (2019), 1385–1392 | DOI | MR | Zbl
[4] A.A. Makhnev, M.M. Isakova, A.A. Tokbaeva, “The nonexistence small Q-polynomial graphs of type (III)”, Sib. Èlektron. Mat. Izv., 17 (2020), 1270–1279 | DOI | MR | Zbl
[5] A. Jurišić, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptography, 65:1-2 (2012), 29–47 | DOI | MR | Zbl