@article{SEMR_2023_20_1_a6,
author = {A. A. Makhnev and M. M. Isakova and A. A. Tokbaeva},
title = {Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {207--210},
year = {2023},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/}
}
TY - JOUR
AU - A. A. Makhnev
AU - M. M. Isakova
AU - A. A. Tokbaeva
TI - Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2023
SP - 207
EP - 210
VL - 20
IS - 1
UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/
LA - ru
ID - SEMR_2023_20_1_a6
ER -
%0 Journal Article
%A A. A. Makhnev
%A M. M. Isakova
%A A. A. Tokbaeva
%T Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 207-210
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/
%G ru
%F SEMR_2023_20_1_a6
A. A. Makhnev; M. M. Isakova; A. A. Tokbaeva. Distance-regular graph with intersection array $\{143,108,27;1,12,117\}$ does not exist. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 207-210. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a6/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin etc, 1989 | MR | Zbl
[2] A. Jurišić, J. Vidali, “Restrictions on classical distance-regular graphs”, J. Algebr. Comb., 46:3-4 (2017), 571–588 | DOI | MR | Zbl
[3] I.N. Belousov, A.A. Makhnev, M.S. Nirova, “On $Q$-polynomial distance-regular graphs $\Gamma$ with strongly regular graphs $\Gamma_2$ and $\Gamma_3$”, Sib. Èlektron. Mat. Izv., 16 (2019), 1385–1392 | DOI | MR | Zbl
[4] A.A. Makhnev, M.M. Isakova, A.A. Tokbaeva, “The nonexistence small Q-polynomial graphs of type (III)”, Sib. Èlektron. Mat. Izv., 17 (2020), 1270–1279 | DOI | MR | Zbl
[5] A. Jurišić, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptography, 65:1-2 (2012), 29–47 | DOI | MR | Zbl