Limited combinatorial-selector sets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 140-149
Voir la notice de l'article provenant de la source Math-Net.Ru
This article discusses the issue of classification of their own subsets of $N =\lbrace0,1,2,3,... \rbrace $ by means of partial Boolean functions. For an arbitrary partial Boolean function $ \beta $ defines the notion of $ \beta $-limited combinatorial-selector set, which is a generalization of the concept of $ \beta $-selector set [1]. Fully describe the classes of these sets, the relationship between these classes by inclusion.
Keywords:
combinatorial sets, combinatorial-selector sets, limited-combinatorial sets, limited combinatorial-selector set.
@article{SEMR_2023_20_1_a5,
author = {D. I. Ivanov and O. V. Ivanova},
title = {Limited combinatorial-selector sets},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {140--149},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a5/}
}
D. I. Ivanov; O. V. Ivanova. Limited combinatorial-selector sets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 140-149. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a5/