Limited combinatorial-selector sets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 140-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article discusses the issue of classification of their own subsets of $N =\lbrace0,1,2,3,... \rbrace $ by means of partial Boolean functions. For an arbitrary partial Boolean function $ \beta $ defines the notion of $ \beta $-limited combinatorial-selector set, which is a generalization of the concept of $ \beta $-selector set [1]. Fully describe the classes of these sets, the relationship between these classes by inclusion.
Keywords: combinatorial sets, combinatorial-selector sets, limited-combinatorial sets, limited combinatorial-selector set.
@article{SEMR_2023_20_1_a5,
     author = {D. I. Ivanov and O. V. Ivanova},
     title = {Limited combinatorial-selector sets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {140--149},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a5/}
}
TY  - JOUR
AU  - D. I. Ivanov
AU  - O. V. Ivanova
TI  - Limited combinatorial-selector sets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 140
EP  - 149
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a5/
LA  - ru
ID  - SEMR_2023_20_1_a5
ER  - 
%0 Journal Article
%A D. I. Ivanov
%A O. V. Ivanova
%T Limited combinatorial-selector sets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 140-149
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a5/
%G ru
%F SEMR_2023_20_1_a5
D. I. Ivanov; O. V. Ivanova. Limited combinatorial-selector sets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 140-149. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a5/

[1] A.N. Degtev, “Recursive-combinatorial properties of subsets of the natural numbers”, Algebra Logic, 29:3 (1990), 204–210 | DOI | MR | Zbl

[2] A.N. Degtev, “Weak combinatorial selective properties of subsets of the natural numbers”, Algebra Logic, 29:4 (1990), 280–286 | DOI | MR | Zbl

[3] A.N. Degtev, “Implicatively selector sets”, Algebra Logic, 35:2 (1996), 80–85 | DOI | MR | Zbl

[4] A.N. Degtev, “Almost combinatorial selector sets”, Math. Notes, 68:6 (2000), 721–723 | DOI | MR | Zbl

[5] A.N. Degtev, D.I. Ivanov, “Weakly combinatorial selector sets”, Algebra Logic, 37:6 (1998), 357–362 | DOI | MR | Zbl

[6] A.N. Degtev, D.I. Ivanov, “Weakly implicatively selective sets of dimension 3”, Discrete Math. Appl., 9:4 (1999), 395–402 | DOI | MR | Zbl

[7] A.N. Degtev, D.I. Ivanov, “About the classes of linear and self-dual weakly implicative selector sets”, Tyumen State University Herald, 4 (2004), 238–241 | MR

[8] C.G. jun. Jockusch, “Semirecursive sets and positive reducibility”, Trans. Am. Math. Soc., 131:2 (1968), 420–436 | DOI | MR | Zbl

[9] D.I. Ivanov, “Weakly implicative selector sets”, Russ. Math., 50:9 (2006), 27–31 | MR | Zbl

[10] D.I. Ivanov, “Weakly combinatorial selector sets”, Russ. Math., 50:11 (2006), 20–23 | MR | Zbl

[11] D.I. Ivanov, M.L. Platonov, “Limited-combinatorial sets”, Sib. Èlectron. Mat. Izv., 16 (2019), 1553–1560 | DOI | MR | Zbl