Limited combinatorial-selector sets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 140-149

Voir la notice de l'article provenant de la source Math-Net.Ru

This article discusses the issue of classification of their own subsets of $N =\lbrace0,1,2,3,... \rbrace $ by means of partial Boolean functions. For an arbitrary partial Boolean function $ \beta $ defines the notion of $ \beta $-limited combinatorial-selector set, which is a generalization of the concept of $ \beta $-selector set [1]. Fully describe the classes of these sets, the relationship between these classes by inclusion.
Keywords: combinatorial sets, combinatorial-selector sets, limited-combinatorial sets, limited combinatorial-selector set.
@article{SEMR_2023_20_1_a5,
     author = {D. I. Ivanov and O. V. Ivanova},
     title = {Limited combinatorial-selector sets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {140--149},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a5/}
}
TY  - JOUR
AU  - D. I. Ivanov
AU  - O. V. Ivanova
TI  - Limited combinatorial-selector sets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 140
EP  - 149
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a5/
LA  - ru
ID  - SEMR_2023_20_1_a5
ER  - 
%0 Journal Article
%A D. I. Ivanov
%A O. V. Ivanova
%T Limited combinatorial-selector sets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 140-149
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a5/
%G ru
%F SEMR_2023_20_1_a5
D. I. Ivanov; O. V. Ivanova. Limited combinatorial-selector sets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 140-149. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a5/