On the dissymmetrization theorem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 477-485
Voir la notice de l'article provenant de la source Math-Net.Ru
A new property of the previously proposed dissymmetrization of functions is established. The conjecture about the capacity of condensers in a circular ring with plates in the form of circles or radial cuts is discussed. The connection of this conjecture with the well-known Gonchar-Baernstein problem of a harmonic measure is shown.
Keywords:
dissymmetrization, harmonic measure, Dirichlet integral, condenser capacity.
@article{SEMR_2023_20_1_a30,
author = {V. N. Dubinin},
title = {On the dissymmetrization theorem},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {477--485},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/}
}
V. N. Dubinin. On the dissymmetrization theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 477-485. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/