On the dissymmetrization theorem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 477-485

Voir la notice de l'article provenant de la source Math-Net.Ru

A new property of the previously proposed dissymmetrization of functions is established. The conjecture about the capacity of condensers in a circular ring with plates in the form of circles or radial cuts is discussed. The connection of this conjecture with the well-known Gonchar-Baernstein problem of a harmonic measure is shown.
Keywords: dissymmetrization, harmonic measure, Dirichlet integral, condenser capacity.
@article{SEMR_2023_20_1_a30,
     author = {V. N. Dubinin},
     title = {On the dissymmetrization theorem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {477--485},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - On the dissymmetrization theorem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 477
EP  - 485
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/
LA  - en
ID  - SEMR_2023_20_1_a30
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T On the dissymmetrization theorem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 477-485
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/
%G en
%F SEMR_2023_20_1_a30
V. N. Dubinin. On the dissymmetrization theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 477-485. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/