On the dissymmetrization theorem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 477-485.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new property of the previously proposed dissymmetrization of functions is established. The conjecture about the capacity of condensers in a circular ring with plates in the form of circles or radial cuts is discussed. The connection of this conjecture with the well-known Gonchar-Baernstein problem of a harmonic measure is shown.
Keywords: dissymmetrization, harmonic measure, Dirichlet integral, condenser capacity.
@article{SEMR_2023_20_1_a30,
     author = {V. N. Dubinin},
     title = {On the dissymmetrization theorem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {477--485},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - On the dissymmetrization theorem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 477
EP  - 485
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/
LA  - en
ID  - SEMR_2023_20_1_a30
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T On the dissymmetrization theorem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 477-485
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/
%G en
%F SEMR_2023_20_1_a30
V. N. Dubinin. On the dissymmetrization theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 477-485. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/

[1] V.N. Dubinin, “On the change in harmonic measure under symmetrization”, Math. USSR, Sb., 52:1 (1985), 267–273 | DOI | MR | Zbl

[2] Albert II Baernstein, “Dubinin's symmetrization theorem”, Lect. Notes Math., 1275, 1987, 23–30 | DOI | MR | Zbl

[3] V.N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhäuser/Springer, Basel, 2014 | MR | Zbl

[4] A.Yu. Solynin, “Isoperimetric inequalities for polygons, and dissymetrization”, St. Petersbg. Math. J., 4:2 (1993), 377–369 | MR | Zbl

[5] Albert II Baernstein, “An extremal property of meromorphic functions with n-fold symmetry”, Complex Variables, Theory Appl., 21:3-4 (1993), 137–148 | MR | Zbl

[6] V. Dimitrov, A proof of the Schinzel-Zassenhaus conjecture on polynomials, arXiv: 1912.12545

[7] V.N. Dubinin, “Upper bound for the least critical values of finite Blaschke products”, Sb. Math., 213:6 (2022), 744–751 | DOI | MR | Zbl

[8] V. N. Dubinin, “On the Green energy of a discrete charge on concentric circles”, Izv. RAN. Ser. Mat., 87:2 (2023), 69–88 | DOI | MR

[9] Albert II Baernstein, “On the harmonic measure of slit domains”, Complex Variables, Theory Appl., 9:1-3 (1987), 131–142 | MR | Zbl

[10] M. Schiffer, “Some recent developments in the theory of conformal mapping”, Appendix to:: R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience Publishers, New York, 1950, 249–323 | MR

[11] D.M. Campbell, J.G. Clunie, W.K. Hayman, “Research problems in complex analysis”, Aspects of contemporary complex analysis, Academic Press, London–New York, 1980, 527–572 | MR | Zbl

[12] A.Yu. Solynin, “Harmonic measure of radial line segments and symmetrization”, Sb. Math., 189:11 (1998), 1701–1718 | DOI | MR | Zbl