Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a30, author = {V. N. Dubinin}, title = {On the dissymmetrization theorem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {477--485}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/} }
V. N. Dubinin. On the dissymmetrization theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 477-485. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a30/
[1] V.N. Dubinin, “On the change in harmonic measure under symmetrization”, Math. USSR, Sb., 52:1 (1985), 267–273 | DOI | MR | Zbl
[2] Albert II Baernstein, “Dubinin's symmetrization theorem”, Lect. Notes Math., 1275, 1987, 23–30 | DOI | MR | Zbl
[3] V.N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhäuser/Springer, Basel, 2014 | MR | Zbl
[4] A.Yu. Solynin, “Isoperimetric inequalities for polygons, and dissymetrization”, St. Petersbg. Math. J., 4:2 (1993), 377–369 | MR | Zbl
[5] Albert II Baernstein, “An extremal property of meromorphic functions with n-fold symmetry”, Complex Variables, Theory Appl., 21:3-4 (1993), 137–148 | MR | Zbl
[6] V. Dimitrov, A proof of the Schinzel-Zassenhaus conjecture on polynomials, arXiv: 1912.12545
[7] V.N. Dubinin, “Upper bound for the least critical values of finite Blaschke products”, Sb. Math., 213:6 (2022), 744–751 | DOI | MR | Zbl
[8] V. N. Dubinin, “On the Green energy of a discrete charge on concentric circles”, Izv. RAN. Ser. Mat., 87:2 (2023), 69–88 | DOI | MR
[9] Albert II Baernstein, “On the harmonic measure of slit domains”, Complex Variables, Theory Appl., 9:1-3 (1987), 131–142 | MR | Zbl
[10] M. Schiffer, “Some recent developments in the theory of conformal mapping”, Appendix to:: R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience Publishers, New York, 1950, 249–323 | MR
[11] D.M. Campbell, J.G. Clunie, W.K. Hayman, “Research problems in complex analysis”, Aspects of contemporary complex analysis, Academic Press, London–New York, 1980, 527–572 | MR | Zbl
[12] A.Yu. Solynin, “Harmonic measure of radial line segments and symmetrization”, Sb. Math., 189:11 (1998), 1701–1718 | DOI | MR | Zbl