Irreducible carpets of Lie type $B_l$, $C_l$ and $F_4$ over fields
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 124-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

V.M. Levchuk described irreducible carpets of Lie type of rank greater than $1$ over the field $F$, at least one additive subgroup of which is an $R$-module, where $F$ is an algebraic extension of the field $R$, in assumption that the characteristic of the field $F$ is different from $0$ and $2$ for the types $B_l$, $C_l$, $F_4$, and for the type $G_2$ it is different from $0, 2$ and $3$ (Algebra i Logika, 1983, 22, no. 5). It turned out that, up to conjugation by a diagonal element, all additive subgroups of such carpets coincide with one intermediate subfield between $R$ and $F$. We solve a similar problem for carpets of types $B_l$, $C_l$, $F_4$ over a field of characteristic $0$ and $2$. It turned out that carpets appear in characteristic $2$, which are parameterized by a pair of additive subgroups, and for types $B_l$ and $C_l$ one of these two additive subgroups may not be a field.
Keywords: Chevalley group, carpet of additive subgroups, carpet subgroup.
@article{SEMR_2023_20_1_a3,
     author = {A. O. Likhacheva and Ya. N. Nuzhin},
     title = {Irreducible carpets of {Lie} type $B_l$, $C_l$ and $F_4$ over fields},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {124--131},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a3/}
}
TY  - JOUR
AU  - A. O. Likhacheva
AU  - Ya. N. Nuzhin
TI  - Irreducible carpets of Lie type $B_l$, $C_l$ and $F_4$ over fields
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 124
EP  - 131
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a3/
LA  - ru
ID  - SEMR_2023_20_1_a3
ER  - 
%0 Journal Article
%A A. O. Likhacheva
%A Ya. N. Nuzhin
%T Irreducible carpets of Lie type $B_l$, $C_l$ and $F_4$ over fields
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 124-131
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a3/
%G ru
%F SEMR_2023_20_1_a3
A. O. Likhacheva; Ya. N. Nuzhin. Irreducible carpets of Lie type $B_l$, $C_l$ and $F_4$ over fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 124-131. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a3/

[1] V.M. Levchuk, “Parabolic subgroups of some ABA-groups”, Mat. Zametki, 31:4 (1982), 509–525 | MR | Zbl

[2] E.I. Khukhro and V.D. Mazurov (eds.), The Kourovka notebook. Unsolved problems in group theory, 19th ed., Sobolev Institut of Mathematics, Novosibirsk, 2018 | MR

[3] V.M. Levchuk, “Generating sets of root elements of Chevalley groups over a field”, Algebra Logic, 22:5 (1983), 362–371 | DOI | MR | Zbl

[4] Ya.N. Nuzhin, A.V. Stepanov, “Subgroups of Chevalley groups of types $B_l$ and $C_l$ containing the group over a subring, and corresponding carpets”, St. Peterbg. Math. J., 31:4 (2020), 719–737 | DOI | MR | Zbl

[5] Ya.N. Nuzhin, “Intermediate subgroups in the Chevalley groups of type $B_l$, $C_l$, $F_4$ and $G_2$ over the nonperfect fields of characteristic 2 and 3”, Sib. Math. J., 54:1 (2013), 119–123 | DOI | MR | Zbl

[6] R. Steinberg, Lectures on Chevalley groups, Yale University, New Haven, 1968 | MR | Zbl

[7] S.K. Franchuk, “On On irreducible carpets of additive subgroups of type $G_2$ over fields of characteristic $p>0$”, Vladikavkaz. Mat. Zh., 22:1 (2020), 78–84 | MR | Zbl

[8] Ya.N. Nuzhin, E.N. Troyanskaya, “Irreducible carpets of additive subgroups of type $G_2$ over a field of characteristic 0”, J. Sib. Fed. Univ., Math. Phys., 15:5 (2022), 610–614 | MR | Zbl

[9] R. Carter, Simple groups of Lie type, Wiley Sons, London etc, 1972 | MR | Zbl

[10] V.A. Koibaev, S.K. Kuklina, A.O. Likhacheva, Ya.N. Nuzhin, “Subgroups, of Chevalley groups over a locally finite field, defined by a family of additive subgroups”, Math. Notes, 102:6 (2017), 792–798 | DOI | MR | Zbl

[11] Ya.N. Nuzhin, “Groups contained between groups of Lie type over various fields”, Algebra Logic, 22:5 (1983), 378–389 | DOI | MR | Zbl

[12] Ya.N. Nuzhin, A.V. Stepanov, “Bruhat decomposition for carpet subgroups of Chevalley groups over fields”, Algebra Logic, 60:5 (2021), 327–335 | DOI | MR | Zbl