Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 183-206

Voir la notice de l'article provenant de la source Math-Net.Ru

Power-law uniform (in the operator norm) convergence on vector subspaces with their own norms in von Neumann's ergodic theorem with continuous time is considered. All possible exponents of the considered power-law convergence are found; for each of these exponents, spectral criteria for such convergence are given and a complete description of all such subspaces is obtained. Uniform convergence over the entire space takes place only in trivial cases, which explains the interest in the uniform convergence just on subspaces. In addition, along the way, the old convergence rate estimates in the von Neumann ergodic theorem for (semi)flows are generalized and refined.
Keywords: von Neumann's ergodic theorem, rates of convergence in ergodic theorems, power-law uniform convergence.
@article{SEMR_2023_20_1_a29,
     author = {A. G. Kachurovskii and I. V. Podvigin and V. E. Todikov},
     title = {Uniform convergence on subspaces in von {Neumann's} ergodic theorem with continuous time},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {183--206},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - I. V. Podvigin
AU  - V. E. Todikov
TI  - Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 183
EP  - 206
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/
LA  - en
ID  - SEMR_2023_20_1_a29
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A I. V. Podvigin
%A V. E. Todikov
%T Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 183-206
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/
%G en
%F SEMR_2023_20_1_a29
A. G. Kachurovskii; I. V. Podvigin; V. E. Todikov. Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 183-206. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/