Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a29, author = {A. G. Kachurovskii and I. V. Podvigin and V. E. Todikov}, title = {Uniform convergence on subspaces in von {Neumann's} ergodic theorem with continuous time}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {183--206}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/} }
TY - JOUR AU - A. G. Kachurovskii AU - I. V. Podvigin AU - V. E. Todikov TI - Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 183 EP - 206 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/ LA - en ID - SEMR_2023_20_1_a29 ER -
%0 Journal Article %A A. G. Kachurovskii %A I. V. Podvigin %A V. E. Todikov %T Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 183-206 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/ %G en %F SEMR_2023_20_1_a29
A. G. Kachurovskii; I. V. Podvigin; V. E. Todikov. Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 183-206. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/
[1] N. Dunford, J. Schwartz, Linear Operators, v. I, General Theory, Interscience, New York–London, 1958 | MR | Zbl
[2] J. von Neumann, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18:1 (1932), 70–82 | DOI | Zbl
[3] N. Dunford, J. Schwartz, Linear operators, v. II, Spectral theory. Self adjoint operators in Hilbert space, Interscience, New York-London, 1963 | MR | Zbl
[4] J. Ben-Artzi, B. Morisse, “Uniform convergence in von Neumann`s ergodic theorem in the absence of spectral gap”, Ergodic Theory Dyn. Syst., 41:6 (2021), 1601–1611 | DOI | MR | Zbl
[5] A.G. Kachurovskii, “The rate of convergence in ergodic theorems”, Russ. Math. Surv., 51:4 (1996), 653–703 | DOI | MR | Zbl
[6] A.G. Kachurovskii, I.V. Podvigin, “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Trans. Mosc. Math. Soc., 2016 (2016), 1–53 | MR | Zbl
[7] N.A. Dzhulai, A.G. Kachurovskii, “Constants in the estimates of the rate of convergence in von Neumann's ergodic theorem with continuous time”, Sib. Math. J., 52:5 (2011), 824–835 | DOI | MR | Zbl
[8] A.G. Kachurovskii, A.V. Reshetenko, “On the rate of convergence in von Neumann's ergodic theorem with continuous time”, Sb. Math., 201:4 (2010), 493–500 | DOI | MR | Zbl
[9] A.G. Kachurovskii, V.V. Sedalishchev, “On the constants in the estimates for the rate of convergence in von Neumann's ergodic theorem”, Math. Notes, 87:5 (2010), 720–727 | DOI | MR | Zbl
[10] A.G. Kachurovskii, V.V. Sedalishchev, “Constants of estimates for the rate of convergence in von Neumann and Birkhoff ergodic theorems”, Sb. Math., 202:8 (2011), 1105–1125 | DOI | MR | Zbl
[11] V.F. Gaposhkin, “Decrease rate of the probabilities of $\varepsilon$-deviations for the means of stationary processes”, Math. Notes, 64:3 (1998), 316–321 | DOI | MR | Zbl
[12] I.A. Ibragimov, Yu.V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing Company, Groningen, 1971 | MR | Zbl
[13] W. Rudin, Principles of mathematical analysis, McGraw-Hill, New York etc, 1964 | MR | Zbl
[14] A.N. Shiryaev, Probability, Springer, New York, 1995 | MR | Zbl
[15] V.F. Gaposhkin, “Convergence of series connected with stationary sequences”, Math. USSR, Izv., 9 (1977), 1297–1321 | DOI | Zbl
[16] E. Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, 101, AMS, Providence, 2003 | DOI | MR | Zbl
[17] U. Krengel, M. Lin, “On the range of the generator of a Markovian semigroup”, Math. Z., 185 (1984), 553–565 | DOI | MR | Zbl
[18] M. Lin, “On the uniform ergodic theorem. II”, Proc. Am. Math. Soc., 46 (1974), 217–225 | DOI | MR | Zbl
[19] E.Yu. Emel'yanov, Non-spectral asymptotic analysis of one-parameter operator semigroups, Operator Theory: Advances and Applications, 173, Birkäuser Verlag, Basel, 2007 | MR | Zbl
[20] A.F.M. ter Elst, M. Lemańczyk, “On one-parameter Koopman groups”, Ergodic Theory Dyn. Syst., 37:5 (2017), 1635–1656 | DOI | MR | Zbl
[21] A. Gomilko, M. Haase, Yu. Tomilov, “On rates in mean ergodic theorems”, Math. Res. Lett., 18:2 (2011), 201–213 | DOI | MR | Zbl
[22] S. Goldstein, “Spectrum of measurable flows”, Inst. Conf. dyn. Syst. Math. Phys. (Rennes 1975, Sect. 14-21), Astérisque, 40, SMF, Paris, 1977, 95–98 | MR | Zbl
[23] M.G. Nadkarni, “On spectra of non-singular transformations and flows”, Sankhya, Ser. A, 41:1-2 (1979), 59–66 | MR | Zbl
[24] E.A. Robinson, “Sums of stationary random variables”, Proc. Am. Math. Soc., 11:1 (1960), 77–79 | DOI | MR | Zbl
[25] V.P. Leonov, “On the dispersion of time-dependent means of a stationary stochastic process”, Theor. Probab. Appl., 6:1 (1962), 87–93 | DOI | MR | Zbl
[26] V.V. Sedalishchev, “Interrelation between the convergence rates in von Neumann's and Birkhoff's ergodic theorems”, Sib. Math. J., 55:2 (2014), 336–348 | DOI | MR | Zbl
[27] Y. Last, “Quantum dynamics and decompositions of singular continuous spectra”, J. Funct. Anal., 142:2 (1996), 406–445 | DOI | MR | Zbl