Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 183-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

Power-law uniform (in the operator norm) convergence on vector subspaces with their own norms in von Neumann's ergodic theorem with continuous time is considered. All possible exponents of the considered power-law convergence are found; for each of these exponents, spectral criteria for such convergence are given and a complete description of all such subspaces is obtained. Uniform convergence over the entire space takes place only in trivial cases, which explains the interest in the uniform convergence just on subspaces. In addition, along the way, the old convergence rate estimates in the von Neumann ergodic theorem for (semi)flows are generalized and refined.
Keywords: von Neumann's ergodic theorem, rates of convergence in ergodic theorems, power-law uniform convergence.
@article{SEMR_2023_20_1_a29,
     author = {A. G. Kachurovskii and I. V. Podvigin and V. E. Todikov},
     title = {Uniform convergence on subspaces in von {Neumann's} ergodic theorem with continuous time},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {183--206},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - I. V. Podvigin
AU  - V. E. Todikov
TI  - Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 183
EP  - 206
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/
LA  - en
ID  - SEMR_2023_20_1_a29
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A I. V. Podvigin
%A V. E. Todikov
%T Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 183-206
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/
%G en
%F SEMR_2023_20_1_a29
A. G. Kachurovskii; I. V. Podvigin; V. E. Todikov. Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 183-206. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a29/

[1] N. Dunford, J. Schwartz, Linear Operators, v. I, General Theory, Interscience, New York–London, 1958 | MR | Zbl

[2] J. von Neumann, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. USA, 18:1 (1932), 70–82 | DOI | Zbl

[3] N. Dunford, J. Schwartz, Linear operators, v. II, Spectral theory. Self adjoint operators in Hilbert space, Interscience, New York-London, 1963 | MR | Zbl

[4] J. Ben-Artzi, B. Morisse, “Uniform convergence in von Neumann`s ergodic theorem in the absence of spectral gap”, Ergodic Theory Dyn. Syst., 41:6 (2021), 1601–1611 | DOI | MR | Zbl

[5] A.G. Kachurovskii, “The rate of convergence in ergodic theorems”, Russ. Math. Surv., 51:4 (1996), 653–703 | DOI | MR | Zbl

[6] A.G. Kachurovskii, I.V. Podvigin, “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Trans. Mosc. Math. Soc., 2016 (2016), 1–53 | MR | Zbl

[7] N.A. Dzhulai, A.G. Kachurovskii, “Constants in the estimates of the rate of convergence in von Neumann's ergodic theorem with continuous time”, Sib. Math. J., 52:5 (2011), 824–835 | DOI | MR | Zbl

[8] A.G. Kachurovskii, A.V. Reshetenko, “On the rate of convergence in von Neumann's ergodic theorem with continuous time”, Sb. Math., 201:4 (2010), 493–500 | DOI | MR | Zbl

[9] A.G. Kachurovskii, V.V. Sedalishchev, “On the constants in the estimates for the rate of convergence in von Neumann's ergodic theorem”, Math. Notes, 87:5 (2010), 720–727 | DOI | MR | Zbl

[10] A.G. Kachurovskii, V.V. Sedalishchev, “Constants of estimates for the rate of convergence in von Neumann and Birkhoff ergodic theorems”, Sb. Math., 202:8 (2011), 1105–1125 | DOI | MR | Zbl

[11] V.F. Gaposhkin, “Decrease rate of the probabilities of $\varepsilon$-deviations for the means of stationary processes”, Math. Notes, 64:3 (1998), 316–321 | DOI | MR | Zbl

[12] I.A. Ibragimov, Yu.V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing Company, Groningen, 1971 | MR | Zbl

[13] W. Rudin, Principles of mathematical analysis, McGraw-Hill, New York etc, 1964 | MR | Zbl

[14] A.N. Shiryaev, Probability, Springer, New York, 1995 | MR | Zbl

[15] V.F. Gaposhkin, “Convergence of series connected with stationary sequences”, Math. USSR, Izv., 9 (1977), 1297–1321 | DOI | Zbl

[16] E. Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, 101, AMS, Providence, 2003 | DOI | MR | Zbl

[17] U. Krengel, M. Lin, “On the range of the generator of a Markovian semigroup”, Math. Z., 185 (1984), 553–565 | DOI | MR | Zbl

[18] M. Lin, “On the uniform ergodic theorem. II”, Proc. Am. Math. Soc., 46 (1974), 217–225 | DOI | MR | Zbl

[19] E.Yu. Emel'yanov, Non-spectral asymptotic analysis of one-parameter operator semigroups, Operator Theory: Advances and Applications, 173, Birkäuser Verlag, Basel, 2007 | MR | Zbl

[20] A.F.M. ter Elst, M. Lemańczyk, “On one-parameter Koopman groups”, Ergodic Theory Dyn. Syst., 37:5 (2017), 1635–1656 | DOI | MR | Zbl

[21] A. Gomilko, M. Haase, Yu. Tomilov, “On rates in mean ergodic theorems”, Math. Res. Lett., 18:2 (2011), 201–213 | DOI | MR | Zbl

[22] S. Goldstein, “Spectrum of measurable flows”, Inst. Conf. dyn. Syst. Math. Phys. (Rennes 1975, Sect. 14-21), Astérisque, 40, SMF, Paris, 1977, 95–98 | MR | Zbl

[23] M.G. Nadkarni, “On spectra of non-singular transformations and flows”, Sankhya, Ser. A, 41:1-2 (1979), 59–66 | MR | Zbl

[24] E.A. Robinson, “Sums of stationary random variables”, Proc. Am. Math. Soc., 11:1 (1960), 77–79 | DOI | MR | Zbl

[25] V.P. Leonov, “On the dispersion of time-dependent means of a stationary stochastic process”, Theor. Probab. Appl., 6:1 (1962), 87–93 | DOI | MR | Zbl

[26] V.V. Sedalishchev, “Interrelation between the convergence rates in von Neumann's and Birkhoff's ergodic theorems”, Sib. Math. J., 55:2 (2014), 336–348 | DOI | MR | Zbl

[27] Y. Last, “Quantum dynamics and decompositions of singular continuous spectra”, J. Funct. Anal., 142:2 (1996), 406–445 | DOI | MR | Zbl