Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a28, author = {B. A. Kargin and Q. Mu and E. G. Kablukova}, title = {Numerical statistical modeling of optical radiation transfer in random crystal media}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {486--500}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a28/} }
TY - JOUR AU - B. A. Kargin AU - Q. Mu AU - E. G. Kablukova TI - Numerical statistical modeling of optical radiation transfer in random crystal media JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 486 EP - 500 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a28/ LA - ru ID - SEMR_2023_20_1_a28 ER -
%0 Journal Article %A B. A. Kargin %A Q. Mu %A E. G. Kablukova %T Numerical statistical modeling of optical radiation transfer in random crystal media %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 486-500 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a28/ %G ru %F SEMR_2023_20_1_a28
B. A. Kargin; Q. Mu; E. G. Kablukova. Numerical statistical modeling of optical radiation transfer in random crystal media. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 486-500. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a28/
[1] K.M. Case, P.F. Zweifel, Linear transport theory, Addison-Wesley Publishing Company, Mass.-Palo Alto-London-Don Mills, 1967 | MR | Zbl
[2] D.I. Nagirner, Lectures on the theory of radiation transfer, St. Petersburg, 2001
[3] M.I. Mishchenko, J.W. Hovenier, L.D. Travis, Light scattering by nonspherical particles: Theory, measurements and geophysical applications, Academic Press, San Diego, 1999
[4] K.-N. Liou, An Introduction to atmospheric radiation, Academic Press, San Diego, 2002 | MR
[5] A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals”, Journal of Atmospheric Sciences, 53:19 (1996), 2813–2825 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[6] K.-N. Liou, P. Yang, Light scattering by ice crystals: fundamentals and applications, Cambridge University Press, Cambridge, 2016
[7] Y. Takano, K.-N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals”, Journal of the Atmospheric Sciences, 46:1 (1989), 3–19 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[8] A. Macke, M.I. Mishchenko, “Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles”, Appl. Opt., 35:11 (1996), 4291–4296 | DOI
[9] A.A. Kokhanovsky, T.Y. Nakajima, “The dependence of phase functions of large transparent particles on their refractive index and shape”, Journal of Physics D: Applied Physics, 31:11 (1998), 1329–1335 | DOI
[10] B.A. Kargin, E.G. Kablukova, Q. Mu, “Numerical stochastic simulation of optical radiation scattering by ice crystals of irregular random shapes”, Computational Technologies, 27:2 (2022), 4–18
[11] G.I. Marchuk, G.A. Mikhailov, M.A. Nazaraliev, R.A. Darbinjan, B.A. Kargin, B.S. Elepov, The Monte Carlo methods in atmospheric optics, Springer, Berlin-Heidelberg, 1980 | MR
[12] V.E. Zuev, G.M. Krekov, Optical models of the atmosphere, Gidrometeoizdat, 1986
[13] D. Deirmendjian, Electromagnetic scattering on spherical polydispersions, American Elsevier Pub Co, New York, 1969
[14] G.A. Korn, T.M. Korn, Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review, Dover Publications, Mineola, 2003 | MR | Zbl
[15] G.A. Mikhailov, A.V. Voitishek, Numerical statistical modeling. Monte Carlo methods, Publishing Center Academy, 2006
[16] Z.B. Zhang, et al, “Geometrical-optics solution to light scattering by droxtal ice crystals”, Appl. Opt., 43:12 (2004), 2490–2499 | DOI
[17] D.B. Mark, et al, Computational geometry algorithms and applications, Spinger, 2008
[18] M.A. Jayaram, F. Hasan, “Convex hulls in image processing: A scoping review”, American Journal of Intelligent Systems, 6:2 (2016), 48–58
[19] R.V. Chadnov, A.V. Skvortsov, “Convex hull algorithms review”, Proceedings. The 8th Russian-Korean International Symposium on Science and Technology, 2004, 112–115
[20] D. Pichardie, B. Yves, “Formalizing convex hull algorithms”, Theorem Proving in Higher Order Logics, TPHOLs 2001, Lecture Notes in Computer Science, 2152, eds. Boulton R.J., Jackson P.B., Springer, Berlin–Heidelberg, 2001, 346–361 | DOI | MR | Zbl
[21] Q. Mu, B.A. Kargin, E.G. Kablukova, “Computer-aided construction of three-dimensional convex bodies of arbitrary shapes”, Computational technologies, 27:2 (2022), 54–61