Fluid flow simulation in a T-connection of square pipes using modern approaches to turbulence modeling
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 25-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the description is given of the new technique for fluid flow simulation in Tjoints of square pipes, based on the numerical solution of the three-dimensional Navier-Stokes equations. As part of the methodology for solving these equations, a modern approach to modeling turbulence is used - the zonal EARSM-LES approach, in which in areas of intense vortex formation, and where it is necessary to increase the accuracy of the solution obtained, the LES turbulence model is used, in the rest of the area the Reynolds stress model EARSM is used. The EARSM model simulates the transfer of all components of the Reynolds stress tensor, which leads to an increase in accuracy when calculating complex flows, in particular, flows near dihedral angles. The article describes a mathematical model based on the Reynolds-averaged three-dimensional Navier-Stokes equations, as well as the equations of the EARSM-LES hybrid model used. The comparison of the use of different basic models, such as EARSM and SST, in the RANS-LES approach for 3D problems containing dihedral angles. It is shown that the EARSM model gives an increase in accuracy compared to the SST, which is explained by taking into account the anisotropy of the Reynolds stress tensor in it, the velocity profiles and components of the Reynolds stress tensor according to the EARSM model are predicted much more accurately than using the SST. Due to this, the EARSM-LES model ultimately gives better results in terms of velocity and tensor components than the SST-LES model. The Russian software package for computational fluid dynamics and engineering analysis LOGOS was used to simulate the tasks presented in this paper.
Keywords: numerical simulation, Navier-Stokes equations, LOGOS software package, T-connections.
Mots-clés : turbulence
@article{SEMR_2023_20_1_a27,
     author = {A. S. Kozelkov and E. S. Tyatyushkina and A. A. Kurkin and V. V. Kurulin and O. E. Kurkina and O. A. Kochetova},
     title = {Fluid flow simulation in a {T-connection} of square pipes using modern approaches to turbulence modeling},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {25--46},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a27/}
}
TY  - JOUR
AU  - A. S. Kozelkov
AU  - E. S. Tyatyushkina
AU  - A. A. Kurkin
AU  - V. V. Kurulin
AU  - O. E. Kurkina
AU  - O. A. Kochetova
TI  - Fluid flow simulation in a T-connection of square pipes using modern approaches to turbulence modeling
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 25
EP  - 46
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a27/
LA  - ru
ID  - SEMR_2023_20_1_a27
ER  - 
%0 Journal Article
%A A. S. Kozelkov
%A E. S. Tyatyushkina
%A A. A. Kurkin
%A V. V. Kurulin
%A O. E. Kurkina
%A O. A. Kochetova
%T Fluid flow simulation in a T-connection of square pipes using modern approaches to turbulence modeling
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 25-46
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a27/
%G ru
%F SEMR_2023_20_1_a27
A. S. Kozelkov; E. S. Tyatyushkina; A. A. Kurkin; V. V. Kurulin; O. E. Kurkina; O. A. Kochetova. Fluid flow simulation in a T-connection of square pipes using modern approaches to turbulence modeling. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 25-46. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a27/

[1] K.N. Volkov, V.N. Emel`yanov, Modelirovaniye krupnykh vikhrey v raschetakh turbulentnykh techeniy, Fizmatlit, M., 2008

[2] Strelets M., “Detached eddy simulation of massively separated flows”, 39th Aerospace Sciences Meeting and Exhibit (Reno, NV, 2001), AIAA Paper 2001–0879

[3] P.R. Spalart, W.-H. Jou, M. Strelets, S.R. Allmaras, “Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach”, Proceedings of first AFOSR international conference on DND/LES, 1997

[4] A.S. Kozelkov, O.L. Krutyakova, A.A. Kurkin, V.V. Kurulin, E.S. Tyatyushkina, “Zonal RANS-LES approach based on an algebraic Reynolds stress model”, Fluid Dyn., 50:5 (2015), 621–628 | DOI | MR | Zbl

[5] F.R. Menter, M. Kuntz, R. Langtry, “Ten years of industrial experience with the SST turbulence model”, Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, eds. K. Hanjalic, Y.Nagano, and M. Tummers, Begell House, Inc., West Redding, 2003, 625–632

[6] P.R. Spalart, “Strategies for turbulence modeling and simulations”, Heat Fluid Flow, 21:3 (2000), 252–263 | DOI

[7] C. Hasse, V. Sohm, M. Wetzel, B. Durst, “Hybrid URANS/LES turbulence simulation of vortex shedding behind a triangular flameholder”, Flow Turbul. Combust., 83:1 (2009), 1–20 | DOI | MR | Zbl

[8] M. Lesieur, Turbulence in fluids, Fluid Mechanics and its Application, 84, Springer, Dordrecht, 2008 | DOI | MR | Zbl

[9] F.R. Menter, A.V. Garbaruk, Y. Egorov, “Explicit algebraic Reynolds stress models for anisotropic wall-bounded flows”, Proc. of 3rd European Conference for Aero-Space Sciences (EUCASS) (Versailles, July 6-9th, 2009), 2009 | Zbl

[10] A.S. Kozelkov, D.Yu. Strelets, M.S. Sokuler, R.H. Arifullin, “Application of mathematical modeling to study near-field pressure pulsations of a near-future prototype supersonic business aircraft”, J. Aerosp. Eng., 351 (2022), 04021120 | DOI

[11] A.V. Struchkov, A.S. Kozelkov, K. Volkov, A.A. Kurkin, R.N. Zhuchkov, A.V. Sarazov, “Numerical simulation of aerodynamic problems based on adaptive mesh refinement method”, Acta Astronautica, 172 (2020), 7–15 | DOI

[12] A.S. Kozelkov, M.A. Pogosyan, D.Y. Strelets, N.V. Tarasova, “Application of mathematical modeling to solve the emergency water landing task in the interests of passenger aircraft certification”, Aerospace Systems, 4 (2021), 75–89 | DOI

[13] Efremov V., Kozelkov A., Dmitriev S., Kurkin A., Kurulin V. and Utkin D., “Technology of 3D Simulation of High-Speed Damping Processes in the Hydraulic Brake Device”, Computational Models in Engineering, ed. K. Volkov, IntechOpen, London, 2018

[14] E.S. Tyatyushkina, A.S. Kozelkov, A.A. Kurkin, E.N. Pelinovsky, V.V. Kurulin, K.S. Plygunova, D.A. Utkin, “Verification of the LOGOS software package for tsunami simulations”, Geosciences, 10:10 (2020), 385 | DOI

[15] A.S. Kozelkov, V.V. Kurulin, “Eddy-resolving numerical scheme for simulation of turbulent incompressible flows”, Comput. Math. Math. Phys., 55:7 (2015), 1232–1241 | DOI | MR | Zbl

[16] A. Kozelkov, V. Kurulin, V. Emelyanov, E. Tyatyushkina, K. Volkov, “Comparison of convective flux discretization schemes in detached-eddy simulation of turbulent flows on unstructured meshes”, J. Sci. Comput., 67:1 (2016), 176–191 | DOI | MR | Zbl

[17] N. Jarrin, S. Benhamadouche, D. Laurence, R. Prosser, “A synthetic-eddy-method for generating inflow conditions for large-eddy simulations”, Int. J. Heat Fluid Flow, 27:4 (2006), 585–593 | DOI

[18] Jarrin N., Prosser R., Uribe J. et al., “Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a Synthetic-Eddy Method”, International Journal of Heat and Fluid Flow, 30:3 (2009), 435–442 | DOI

[19] D.Y. Adamian, M.Kh. Strelets, A.K. Travin, “A efficient method for synthetic turbulence generation under LES inflow in the frame of zonal RANS-LES approaches to the computation of turbulent flows”, Matem. Mod., 23:7 (2011), 3–19 | Zbl

[20] J. Frohlich, D. Von Terzi, “Hybrid LES/RANS methods for the simulation of turbulent flows”, Progress in Aerospace Sciences, 44:5 (2008), 349–377 | DOI

[21] D.C. Wilcox, Turbulence Modeling for CFD, 2nd Edition, DCW Industries, Inc., La Canada, 1998

[22] S. Wallin, A.V. Johansson, “An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows”, J. Fluid Mech., 403 (2000), 89–132 | DOI | MR | Zbl

[23] M. Chevalier, S.H. Peng, “Detached eddy simulation of turbulent flow in a highly offset intake diffuser”, Progress in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 111, eds. Peng SH., Doerffer P., Haase W., Springer, Berlin–Heidelberg, 2010, 111–121 | DOI

[24] A.S. Kozelkov, V.V. Kurulin, O.L. Puchkova, S.V. Lashkin, “Simulation of turbulent flows using an algebraic Reynolds stress model with universal wall functions”, Vychisl. Mekh. Splosh. Sred, 7:1 (2014), 40–51

[25] E.M. Cherry, C.J. Elkins, et al., “Geometric sensitivity of 3-D separated flows”, Proc. of 5th International Symposium on Turbulence and Shear Flow Phenomena - TSFP5 (Munich, August 27-29, 2007)

[26] N. Fukushima, K. Fukagata, N. Kasagi, H. Noguchi, K. Tanimoto, “Numerical and experimental study on turbulent thermal mixing in a T-junction flow”, The 6th ASME-JSME Thermal Engeneering Joint Conference (March 16-20, 2003)

[27] H. Grotjans, F.R. Menter, “Wall functions for industrial applications”, Computational Fluid Dynamics'98, Part 2, v. 1, ed. K.D. Papailiou, John Wiley Sons, Chichester, 1998, 1112–1117

[28] U. Piomelli, E. Balaras, “Wall-layer models for large eddy simulations”, Annu. Rev. Fluid Mech., 34:1 (2002), 349–374 | DOI | MR | Zbl