On uniform asymptotics of solutions of second-order differential equations with meromorphic coefficients in a neighborhood of singular points
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 251-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of obtaining asymptotics for solutions of differential operators in a neighborhood of an irregular singular point; more precisely, the construction of uniform asymptotics for solutions of linear differential equations with second-order meromorphic coefficients in a neighborhood of a singular point. Examples are also given that confirm the relevance of the results obtained in the theory of equations of mathematical physics.
Keywords: Second-order differential operator, singular points.
Mots-clés : meromorphic coefficients
@article{SEMR_2023_20_1_a26,
     author = {M. V. Korovina and H. A. Matevossian},
     title = {On uniform asymptotics of solutions of second-order differential equations with meromorphic coefficients in a neighborhood of singular points},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {251--261},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a26/}
}
TY  - JOUR
AU  - M. V. Korovina
AU  - H. A. Matevossian
TI  - On uniform asymptotics of solutions of second-order differential equations with meromorphic coefficients in a neighborhood of singular points
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 251
EP  - 261
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a26/
LA  - ru
ID  - SEMR_2023_20_1_a26
ER  - 
%0 Journal Article
%A M. V. Korovina
%A H. A. Matevossian
%T On uniform asymptotics of solutions of second-order differential equations with meromorphic coefficients in a neighborhood of singular points
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 251-261
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a26/
%G ru
%F SEMR_2023_20_1_a26
M. V. Korovina; H. A. Matevossian. On uniform asymptotics of solutions of second-order differential equations with meromorphic coefficients in a neighborhood of singular points. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 251-261. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a26/

[1] J. Ecalle, Cinq applications des fonctions resurgentes, Prepub. Math. d'Orsay, 62, 1984

[2] F. dell'Isola, H. Gouin, P. Seppecher, “Radius and surface tension of microscopic bubbles by second gradient theory”, C. R. Acad. Sci., Paris, Sér. II, Fasc., 320:5 (1995), 211–216 | Zbl

[3] F. dell'Isola, H. Gouin, G. Rotoli, “Nucleation of spherical shell-like interfaces by second gradient theory: Numerical simulations”, Eur. J. Mech., 15:4 (1996), 545–568 | Zbl

[4] V.A. Kondrat'ev, “Boundary value problems for parabolic equations in closed domains”, Tr. Mosk. Mat. O-va, 15, 1966, 400–451 | MR | Zbl

[5] V.A. Kondrat'ev, “Boundary value problems for elliptic equations in domains with conical or angular points”, Tr. Mosk. Mat. O-va, 16, 1967, 209–292 | MR | Zbl

[6] M.V. Korovina, “Existence of resurgent solutions for equations with higher-order degeneration”, Differ. Equ., 47:3 (2011), 346–354 | DOI | MR | Zbl

[7] M.V. Korovina, “Asymptotics of solutions of partial differential equations with higher degenerations and the Laplace equation on a manifold with a cuspidal singularity”, Differ. Equ., 49:5 (2013), 588–598 | DOI | MR | Zbl

[8] M. Korovina, “Asymptotics of solutions of linear differential equations with holomorphic coefficients in the neighborhood of an infinitely distant point”, MDPI Mathematics, 8:12 (2020), 2249

[9] M.V. Korovina, O.A. Matevosyan, I.N. Smirnov, “On the asymptotics of solutions of the wave operator with meromorphic coefficients”, Math. Notes, 109:2 (2021), 312–316 | DOI | MR | Zbl

[10] M.V. Korovina, H.A. Matevossian, I.N. Smirnov, “Uniform asymptotics of solutions of the wave operator with meromorphic coefficients”, Applicable Analysis, 2021 | DOI | MR

[11] H.A. Matevossian, “On the Steklov-type biharmonic problem in unbounded domains”, Russ. J. Math. Phys., 25:2 (2018), 271–276 | DOI | MR | Zbl

[12] H.A. Matevossian, “On the polyharmonic Neumann problem in weighted spaces”, Complex Var. Elliptic Equ., 64:1 (2019), 1–7 | DOI | MR | Zbl

[13] H.A. Matevossian, “Asymptotics and uniqueness of solutions of the elasticity system with the mixed Dirichlet-Robin boundary conditions”, MDPI Mathematics, 8:12 (2020), 2241

[14] H. Poincaré, “Sur les intégrales irrégulières des équations linéaires”, Acta Math., 8 (1886), 295–344 | DOI | MR | Zbl

[15] H. Poincaré, Selected Works, v. 3, Mathematics. Theoretical Physics. Analysis of the mathematical and natural works of Henri Poincaré, Nauka, M., 1974 | Zbl

[16] G. Sciarra, F. dell'Isola, K. Hutter, “Dilatational and compacting behavior around a cylindrical cavern leached out in a solid-fluid elastic rock salt”, Int. J. Geomechanics, 5:3 (2005), 233–243 | DOI

[17] B.-W. Schulze, B. Sternin, V. Shatalov, Asymptotic Solutions to Differential Equations on Manifolds with Cusps, Preprint MPI No 96-89, Max-Planck-Institut fur Mathematik, Bonn, 1996

[18] B.-W. Schulze, B. Sternin, V. Shatalov, “An operator algebra on manifolds with cusp-type singularities”, Ann. Global Anal. Geom., 16:2 (1998), 101–140 | DOI | MR | Zbl

[19] B.Yu. Sternin, V. E. Shatalov, “Differential equations in spaces with asymptotics on manifolds with cusp singularities”, Differ. Equ., 38:12 (2002), 1764–1773 | DOI | MR | Zbl

[20] L.W. Thomé, “Zür Theorie der linearen Differentialgleichungen”, Borchardt J., 74 (1872), 193–218 | MR | Zbl