Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains. II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 211-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Dirichlet problem for the Poisson equation in bounded Lipschitz domains. We show that its well-posedness in the higher order Sobolev space implies a discrete Hardy type inequality that contains a positive harmonic function with vanishing trace and the approximative numbers of the boundary of the domain. This necessary condition is also expected to be sufficient for the well-posedness. A simpler condition occurring in the author's straightenability theory of Lipschitz domains is shown to be equivalent to the existence of a homeomorphism that straightens the boundary and preserves with respect to composition the subspace of zero trace functions in the considered Sobolev space.
Keywords: approximative numbers, Dirichlet problem for the Poisson equation, Hardy type inequality, Lipschitz domain, straightening.
@article{SEMR_2023_20_1_a25,
     author = {A. I. Parfenov},
     title = {Criterion for the {Sobolev} well-posedness of the {Dirichlet} problem for the {Poisson} equation in {Lipschitz} domains. {II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {211--244},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a25/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains. II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 211
EP  - 244
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a25/
LA  - ru
ID  - SEMR_2023_20_1_a25
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains. II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 211-244
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a25/
%G ru
%F SEMR_2023_20_1_a25
A. I. Parfenov. Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains. II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 211-244. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a25/

[1] M. Baran, W. Pleśniak, “Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves”, Stud. Math., 125:1 (1997), 83–96 | MR | Zbl

[2] B. Bojanov, N. Naidenov, “Exact Markov-type inequalities for oscillating perfect splines”, Constructive Approximation, 18:1 (2002), 37–59 | DOI | MR | Zbl

[3] L. Bos, P. Milman, “Tangential Markov inequalities on singular varieties”, Indiana Univ. Math. J., 55:1 (2006), 65–73 | DOI | MR | Zbl

[4] A. Brudnyi, “Bernstein type inequalities for quasipolynomials”, J. Approximation Theory, 112:1 (2001), 28–43 | DOI | MR | Zbl

[5] V.I. Burenkov, “Sobolev's integral representation and Taylor's formula”, Proc. Steklov Inst. Math., 131 (1974), 33–38 | MR | Zbl

[6] V.I. Burenkov, Sobolev spaces on domains, B.G. Teubner, Stuttgart, 1998 | MR | Zbl

[7] G. David, S. Semmes, “Singular integrals and rectifiable sets in $R^n$. Au-delà des graphes lipschitziens”, Astérisque, 193, Société Mathématique de France, Montrouge, 1991 | MR | Zbl

[8] S.L. Ehdel'shtejn, “Sharp (with respect to the order of the highest exponent) estimate of the derivative of a power quasipolynomial in $L_2[0,1]$”, Math. Notes, 35:4 (1984), 289–295 | DOI | Zbl

[9] T. Erdélyi, J. Szabados, “On a generalization of the Bernstein-Markov inequality”, Algebra Anal., 14:4 (2002), 36–53 | MR | Zbl

[10] T. Erdélyi, “George Lorentz and inequalities in approximation”, Algebra Anal., 21:3 (2009), 1–57 | MR | Zbl

[11] T. Erdélyi, “Markov-type inequalities for products of Müntz polynomials revisited”, Progress in approximation theory and applicable complex analysis. In memory of Q.I. Rahman, eds. N.K. Govil et al., Springer, Cham, 2017, 19–39 | MR | Zbl

[12] E. Fabes, O. Mendez, M. Mitrea, “Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains”, J. Funct. Anal., 159:2 (1998), 323–368 | DOI | MR | Zbl

[13] Ch. Fefferman, R. Narasimhan, “Bernstein's inequality on algebraic curves”, Ann. Inst. Fourier, 43:5 (1993), 1319–1348 | DOI | MR | Zbl

[14] L. Gendre, “Inégalités de Markov tangentielles locales sur les courbes algébriques singulières de $\mathbb R^n$”, Ann. Pol. Math., 86:1 (2005), 59–77 | DOI | MR | Zbl

[15] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer, Berlin etc., 1983 | MR | Zbl

[16] L.A. Harris, “A proof of Markov's theorem for polynomials on Banach spaces”, J. Math. Anal. Appl., 368:1 (2010), 374–381 | DOI | MR | Zbl

[17] D. Jerison, C.E. Kenig, “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 161–219 | DOI | MR | Zbl

[18] S. Lang, Algebra, Addison-Wesley, Reading, 1965 | MR | Zbl

[19] V.G. Maz'ya, T.O. Shaposhnikova, “Multipliers in spaces of differentiable functions”, Tr. Semin. S.L. Soboleva, 1 (1979), 37–90 | MR | Zbl

[20] V.G. Maz'ya, T.O. Shaposhnikova, “On the regularity of the boundary in the $L_p$-theory of elliptic boundary value problems. I”, Tr. Semin. S.L. Soboleva, 2 (1980), 39–56 | MR | Zbl

[21] V.G. Maz'ya, T.O. Shaposhnikova, “On boundary regularity in $L_p$-theory of elliptic boundary value problems. II”, Tr. Semin. S.L. Soboleva, 1 (1981), 57–102 | MR | Zbl

[22] V.G. Maz'ya, T.O. Shaposhnikova, Theory of multipliers in spaces of differentiable functions, Pitman, Boston etc, 1985 | MR | Zbl

[23] V.G. Maz'ya, T.O. Shaposhnikova, Theory of Sobolev multipliers. With applications to differential and integral operators, Springer, Berlin, 2009 | MR | Zbl

[24] H.N. Mhaskar, “A Markov-Bernstein inequality for Gaussian networks”, Trends and applications in constructive approximation, Papers of the 4th IBoMAT meeting, eds. D.H. Mache et al., Birkhäuser, Basel, 2005, 165–180 | DOI | MR | Zbl

[25] J. Nečas, “On the domains of type $\mathfrak N$”, Czech. Math. J., 12:2 (1962), 274–287 | DOI | MR | Zbl

[26] J. Nečas, Direct methods in the theory of elliptic equations, Springer, Berlin, 2012 | MR | Zbl

[27] S.M. Nikol'skii, “Bernstein inequality for algebraic polynomials on manifolds described by trigonometric polynomials”, Acta Sci. Math., 60:3–4 (1995), 581–588 | MR | Zbl

[28] A.I. Parfenov, “A discrete norm on a Lipschitz surface and the Sobolev straightening of a boundary”, Sib. Adv. Math., 18:4 (2008), 258–274 | DOI | MR | Zbl

[29] A.I. Parfenov, “A criterion for straightening of a Lipschitz surface in the Lizorkin-Triebel sense. I”, Sib. Adv. Math., 20:2 (2010), 83–127 | DOI | MR | Zbl

[30] A.I. Parfenov, “A criterion for the straightening of a Lipschitz surface in the Lizorkin-Triebel sense. II”, Sib. Adv. Math., 20:3 (2010), 201–216 | DOI | MR | Zbl

[31] A.I. Parfenov, “A criterion for straightening a Lipschitz surface in the Lizorkin-Triebel sense. III”, Sib. Adv. Math., 21:2 (2011), 100–129 | DOI | MR | Zbl

[32] A.I. Parfenov, “A characterization of multipliers in the Hedberg-Netrusov spaces”, Sib. Adv. Math., 22:1 (2012), 13–40 | DOI | MR | Zbl

[33] A.I. Parfenov, “A weighted a priori estimate in straightenable domains of local Lyapunov–Dini type”, Sib. Èlectron. Mat. Izv., 9 (2012), 65–150 | MR | Zbl

[34] A.I. Parfenov, “Criterion for the Sobolev well-posedness of the Dirichlet problem for the Poisson equation in Lipschitz domains. I”, Sib. Èlectron. Mat. Izv., 17 (2020), 2142–2189 | DOI | MR | Zbl

[35] W. Pleśniak, “Inégalité de Markov en plusieurs variables”, Int. J. Math. Math. Sci., 14:3 (2006), 24549 | MR | Zbl

[36] N. Roytwarf, Y. Yomdin, “Bernstein classes”, Ann. Inst. Fourier, 47:3 (1997), 825–858 | DOI | MR | Zbl

[37] I.B. Simonenko, “Certain estimates for power quasipolynomials”, Mat. Sb., 100(142):1(5) (1976), 89–101 | MR | Zbl

[38] V.I. Skalyga, “V.A. Markov's theorems in normed spaces”, Izv. Math., 72:2 (2008), 383–412 | DOI | MR | Zbl

[39] L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Springer, Berlin, 2007 | MR | Zbl

[40] H. Triebel, Interpolation theory. Function spaces. Differential operators, Deutscher Verlag des Wissenschaften, Berlin, 1978 | MR | Zbl

[41] H. Triebel, Theory of function spaces II, Birkhäuser Verlag, Basel etc, 1992 | MR | Zbl

[42] K. Włodarczyk, “Bernstein's theorem for polynomial maps of complex topological vector spaces”, Proc. R. Soc. Edinb. Sect. A, 99 (1985), 329–331 | DOI | MR | Zbl

[43] W.P. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Springer-Verlag, Berlin etc, 1989 | MR | Zbl