Spatially-Nonlocal Boundary Value Problems with the generalized Samarskii--Ionkin condition for quasi-parabolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 110-123

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the study of the solvability of boundary value problems for quasi-parabolic equations $$(-1)^pD^{2p+1}_tu-\frac{\partial}{\partial x}\left(a(x)u_x\right)+c(x,t)u=f(x ,t)$$ $$((x,t)\in (0,1)\times (0,T), a(x)>0, D^k_t=\frac{\partial^k}{\partial t ^k},\ p>0 - \text{integer})$$ with boundary conditions of one of the types $$u(0,t)-\beta u(1,t)=0, u_x(1,t)=0, t\in (0,T),$$ or $$u_x(0,t)-\beta u_x(1,t)=0, u(1,t)=0, t\in (0,T).$$ The problems under study can be treated as nonlocal problems with the generalized Samarskii–Ionkin condition in terms of spatial variable, for them we prove existence and uniqueness theorems for regular solutions—namely, solutions that have all generalized in the sense of S.L. Sobolev derivatives included in the corresponding equation.
Mots-clés : quasi-parabolic equations, existence
Keywords: non-local boundary value problems, generalized Samarskii–Ionkin condition, regular solutions, uniqueness.
@article{SEMR_2023_20_1_a24,
     author = {A. I. Kozhanov and A. M. Abdrakhmanov},
     title = {Spatially-Nonlocal {Boundary} {Value} {Problems} with the generalized {Samarskii--Ionkin} condition for quasi-parabolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {110--123},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a24/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - A. M. Abdrakhmanov
TI  - Spatially-Nonlocal Boundary Value Problems with the generalized Samarskii--Ionkin condition for quasi-parabolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 110
EP  - 123
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a24/
LA  - ru
ID  - SEMR_2023_20_1_a24
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A A. M. Abdrakhmanov
%T Spatially-Nonlocal Boundary Value Problems with the generalized Samarskii--Ionkin condition for quasi-parabolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 110-123
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a24/
%G ru
%F SEMR_2023_20_1_a24
A. I. Kozhanov; A. M. Abdrakhmanov. Spatially-Nonlocal Boundary Value Problems with the generalized Samarskii--Ionkin condition for quasi-parabolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 110-123. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a24/