Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a24, author = {A. I. Kozhanov and A. M. Abdrakhmanov}, title = {Spatially-Nonlocal {Boundary} {Value} {Problems} with the generalized {Samarskii--Ionkin} condition for quasi-parabolic equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {110--123}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a24/} }
TY - JOUR AU - A. I. Kozhanov AU - A. M. Abdrakhmanov TI - Spatially-Nonlocal Boundary Value Problems with the generalized Samarskii--Ionkin condition for quasi-parabolic equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 110 EP - 123 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a24/ LA - ru ID - SEMR_2023_20_1_a24 ER -
%0 Journal Article %A A. I. Kozhanov %A A. M. Abdrakhmanov %T Spatially-Nonlocal Boundary Value Problems with the generalized Samarskii--Ionkin condition for quasi-parabolic equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 110-123 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a24/ %G ru %F SEMR_2023_20_1_a24
A. I. Kozhanov; A. M. Abdrakhmanov. Spatially-Nonlocal Boundary Value Problems with the generalized Samarskii--Ionkin condition for quasi-parabolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 110-123. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a24/
[1] J.R. Cannon, “The solution of the heat equation subject to the specification of energy”, Q. Appl. Math., 22 (1964), 155–160 | MR | Zbl
[2] L.I. Kamynin, “A boundary value problem in the theory of heat conduction with nonclassical boundary conditions”, U.S.S.R. Comput. Math. Math. Phys., 4:6 (1964), 1006–1024 | DOI | MR | Zbl
[3] N.I. Ionkin, “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 | MR | Zbl
[4] N.I. Yurchuk, “Mixed problem with an integral condition for certain parabolic equations”, Differ. Equations, 22 (1986), 1457–1463 | MR | Zbl
[5] N.I. Ionkin, “The stability of a problem in the theory of heat conduction with nonclassical boundary conditions”, Diff. Uravn., 15:7 (1979), 1279–1283 | MR | Zbl
[6] S.A. Beilin, “Existence of solutions for one-dimensional wave equations with nonlocal conditions”, Electron. J. Differ. Equ., 2001, 76 | MR | Zbl
[7] A.S. Berdyshev, A. Cabada, B.J. Kadirkulov, “The Samarskii-Ionkin type problem for the fourth order parabolic equation with fractional differential operator”, Comput. Math. Appl., 62:10 (2011), 3884–3893 | DOI | MR | Zbl
[8] I.A. Kaliev, M.M. Sabitova, “Problems of determining the temperature and density of heat sources from the initial and final temperatures”, Sib. Zh. Ind. Mat., 12:1 (2009), 89–97 | MR | Zbl
[9] A.A. Samarskij, “Some problems in differential equation theory”, Differ. Equations, 16 (1981), 1221–1228 | MR | Zbl
[10] N.L. La$\check{z}$etić, “On classical solutions of mixed boundary problems for one-dimensional parabolic equation of second order”, Publ. Inst. Math. Nouv. Sér., 67:81 (2000), 53–75 | MR | Zbl
[11] A.I. Kozhanov, “Solvability of boundary value problems with nonlocal and integral conditions for a parabolic equation”, Nonlinear Bound. Value Probl., 20 (2010), 54–76 | MR | Zbl
[12] A.M. Abdrakhmanov, A.I. Kozhanov, “A problem with a nonlocal boundary condition for one class of odd-order equations”, Russ. Math., 51:5 (2007), 1–10 | DOI | MR | Zbl
[13] A.M. Abdrakhmanov, “Solvability of a boundary-value problem with an integral boundary condition of the second kind for equations of odd order”, Mat. Notes, 88:2 (2010), 151–159 | DOI | MR | Zbl
[14] S.L. Sobolev, Some applications of functional analysis in mathematical physics, Amer. Math. Soc., Providence, 1991 | MR | Zbl
[15] O.A. Ladyzhenskaya, N.N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968 | MR | Zbl
[16] H. Triebel, Interpolation theory. Function spaces. Differential operators, Deutscher Verlag des Wissenschaften, Berlin, 1978 | MR | Zbl
[17] V.A. Trenogin, Functionala Analysis, Nauka, M., 1980 | MR | Zbl
[18] O.V. Besov, V.P. Il'in, S.M. Nikol'skiy, Integral representations of functions and embedding theorems, Nauka, M., 1975 | MR | Zbl
[19] A.I. Kozhanov, “On the solvability of certain spatially nonlocal boundary-value problems for linear hyperbolic equations of second order”, Math. Notes, 90:2 (2011), 238–249 | DOI | MR | Zbl