Iterative solution of the retrospective inverse heat conduction problem using the Poisson integral
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 72-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the inverse problem of identification of the finite initial condition of the Cauchy problem for the homogeneous heat conduction equation using the first kind linear Fredholm integral equation. Its discretization is carried out with the help of the quadrature rectangular formula. For the numerical realization of the obtained system of linear algebraic equations with almost complete, symmetric, positively determined, ill-conditioned matrix it is proposed to use the method of conjugate gradients. Examples of reconstruction of smooth, nonsmooth and discontinuous initial conditions in one- and two-dimensional cases, including the introduction of «noise», characteristic of redefinition conditions of inverse problems, are given.
Keywords: retrospective inverse heat conduction problem, first kind Fredholm integral equation, system of linear equations with ill-conditioned matrix, method of conjugate gradients.
Mots-clés : Poisson integral
@article{SEMR_2023_20_1_a23,
     author = {V. I. Vasiliev and A. M. Kardashevsky},
     title = {Iterative solution of the retrospective inverse heat conduction problem using the {Poisson} integral},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {72--85},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a23/}
}
TY  - JOUR
AU  - V. I. Vasiliev
AU  - A. M. Kardashevsky
TI  - Iterative solution of the retrospective inverse heat conduction problem using the Poisson integral
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 72
EP  - 85
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a23/
LA  - ru
ID  - SEMR_2023_20_1_a23
ER  - 
%0 Journal Article
%A V. I. Vasiliev
%A A. M. Kardashevsky
%T Iterative solution of the retrospective inverse heat conduction problem using the Poisson integral
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 72-85
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a23/
%G ru
%F SEMR_2023_20_1_a23
V. I. Vasiliev; A. M. Kardashevsky. Iterative solution of the retrospective inverse heat conduction problem using the Poisson integral. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 72-85. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a23/

[1] R. Lattès, J.-I. Lions, The method of quasi-reversibility. Applications to partial differential equations, Elsevier, New York, 1969 | MR | Zbl

[2] V.K. Ivanov, V.V. Vasin, V.P. Tanana, Theory of linear ill-posed problems and its applications, Nauka, M., 1978 | MR | Zbl

[3] A.N. Tikhonov, V.Ya. Arsenin, Methods for the solution of ill-posed problems, Nauka, M., 1979 | MR | Zbl

[4] A.B. Vasil'eva, N.A. Tikhonov, Integral equations, Textbook, Izdatel'stvo Moskovskogo Universiteta, M., 1989 | Zbl

[5] A.N. Tikhonov, A.V. Goncharskij, V.V. Stepanov, A.G. Yagola, Numerical methods for the solution of ill-posed problems, Nauka, M., 1990 | MR | Zbl

[6] A.M. Denisov, Vvedeniye v teoriyu obratnykh zadach, Izdatel'stvo Moskovskogo Universiteta, M., 1994

[7] M.M. Lavrent'ev, V.G. Romanov, S.T. Shishatskij, Ill-posed problems of mathematical physics and analysis, Nauka, M., 1980 | MR | Zbl

[8] V.G. Romanov, Inverse problems of mathematical physics, Nauka, M., 1984 | MR | Zbl

[9] A.A. Samarskii, P.N. Vabishchevich, Chislennyye metody resheniya obratnykh zadach matematicheskoy fiziki, Izdatel'stvo LKI, M., 2009

[10] S.I. Kabanikhin, Obratnyye i nekorrektnyye zadachi, Izdatel'stvo SO RAN, Novosibirsk, 2018

[11] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York, 2000 | MR | Zbl

[12] V. Isakov, Inverse problems for partial differential equations, Springer, New York, 2006 | MR | Zbl

[13] S.I. Kabanikhin, “Inverse problems of natural science”, Comput. Math. Math. Phys., 60:6 (2020), 911–914 | DOI | MR | Zbl

[14] S.I. Kabanikhin, G.B. Bakanov, “The optimizational method for solving the discrete inverse problem for hyperbolic equation”, J. Inverse Ill-Posed Probl., 4:6 (1996), 513–530 | DOI | MR | Zbl

[15] S.I. Kabanikhin, G.B. Bakanov, “The optimization method for solving a discrete inverse problem for a hyperbolic equation”, Dokl. Math., 58:1 (1998), 32–35 | MR | Zbl

[16] A.L. Karchevsky, “Finite-difference coefficient inverse problem and properties of the misfit functional”, J. Inverse Ill-Posed Probl., 6:5 (1998), 431–452 | DOI | MR | Zbl

[17] A.A. Samarskii, P.N. Vabishchevich, V.I. Vasil'ev, “Iterative solution of a retrospective inverse problem of heat conduction”, Mat. Model., 9:5 (1997), 119–127 | MR | Zbl

[18] D. Lesnic, L. Elliott, D. Ingham, “An iterative boundary element method for solving the backward heat conduction problem using an elliptic approximation”, Inverse Problems in Engineering, 6:4 (1998), 255–279 | DOI | MR

[19] A.I. Korotkii, I.A. Tsepelev, “Solution of a retrospective inverse problem for a nonlinear evolutionary model”, Proceedings of the Steklov Institute of Mathematics, 2003, Suppl. 2, S80–S94 ; Fluid dynamics, ed. Vasil'eva E.V., Maik Nauka/Interperiodica, M. | MR | Zbl

[20] N.S. Mera, “The method of fundamental solutions for the backward heat conduction problem”, Inverse Probl. Sci. Eng., 13:1 (2005), 65–78 | DOI | MR | Zbl

[21] B.T. Johansson, D. Lesnic, “A procedure for determining a spacewise dependent heat source and the initial temperature”, Appl. Anal., 87:3 (2008), 265–276 | DOI | MR | Zbl

[22] A. Ismail-Zadeh, A. Korotkii, G. Schubert, I. Tsepelev, “Numerical techniques for solving the inverse retrospective problem of thermal evolution of the Earth interior”, Computers Structures, 87:11-12 (2009), 802–811 | DOI | MR

[23] Zhenyu Zhao, Zehong Meng, “A modified Tikhonov regularization method for a backward heat equation”, Inverse Probl. Sci. Eng., 19:8 (2011), 1175–1182 | DOI | MR | Zbl

[24] V.I. Vasil'ev, A.M. Kardashevsky, P.V. Sivtsev, “Computational experiment on the numerical solution of some inverse problems of mathematical physics”, IOP Conf. Series: Mater. Sci. Eng., 158 (2016), 012093 | DOI

[25] V.I. Vasil'ev, A.M. Kardashevsky, “Iterative solution of the retrospective inverse problem for a parabolic equation using the conjugate gradient method”, LNCS, 10187, Springer, Cham, 2017, 698–705 | MR | Zbl

[26] V.P.. Tanana, A.I. Sidikova, “On an estimate for the error of an approximate solution caused by the discretization of an integral equation of the first kind”, Proc. Steklov Inst. Math., 2017, suppl. 1, S217–S224 | MR | Zbl

[27] V.I. Vasil'ev, A.M. Kardashevskii, “Numerical solution of the retrospective inverse problem of heat conduction with the help of the Poisson integral”, J. Appl. Ind. Math., 12:3 (2018), 577–586 | DOI | MR | Zbl

[28] A. Savitzky, M.J.E. Golay, “Smoothing and differentiation of data by simplified least squares procedures”, Anal. Chem., 36:8 (1964), 1627–1639 | DOI

[29] B.G. Gowri, V. Hariharan, S. Thara, etc., “2D Image data approximation using Savitzky Golay filter - Smoothing and differencing”, 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (Kottayam, India, 2013), 365–371

[30] https://github.com/espdev/sgolay2/blob/master/sgolay2.py