Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a22, author = {T. I. Fedoryaeva}, title = {On {Binomial} coefficients of real arguments}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {514--523}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a22/} }
T. I. Fedoryaeva. On Binomial coefficients of real arguments. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 514-523. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a22/
[1] M. Abramowitz (ed), I.A. Stegun (ed), Handbook of mathematical functions with formulas, graphs, and mathematical tables, John Wiley Sons, New York etc, 1972 | MR | Zbl
[2] T.I. Fedoryaeva, “Logarithmic asymptotic of the number of central vertices of almost all $n$-vertex graphs of diameter $k$”, Sib. Èlectron. Mat. Izv., 19:2 (2022), 747–761 | MR
[3] G.M. Fikhtengol'ts, Course of Differential and Integral Calculus, v. 2, Fizmatlit, M., 2003; 1965 | Zbl
[4] D. Fowler, “The binomial coefficient function”, Am. Math. Mon., 103:1 (1996), 1–17 | DOI | MR | Zbl
[5] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete mathematics: a foundation for computer science, Addison-Wesley, Amsterdam, 1994 | MR | Zbl
[6] J.L.W.V. Jensen and T.H. Gronwall, “An elementary exposition of the theory of the Gamma function”, Annals of Math. (2), 17:3 (1916), 124–166 | DOI | MR | Zbl
[7] St.T. Smith, “The binomial coefficient $\binom{n}{x}$ for arbitrary $x$”, Online J. Anal. Comb., 15 (2020), 7 | MR | Zbl