On Binomial coefficients of real arguments
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 514-523

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well-known, a generalization of the classical concept of the factorial $n!$ for a real number $x\in {\mathbb R}$ is the value of Euler's gamma function $\Gamma(1+x)$. In this connection, the notion of a binomial coefficient naturally arose for admissible values of the real arguments. We prove by elementary means a number of properties of binomial coefficients $\binom{r}{\alpha}$ of real arguments $r, \alpha\in {\mathbb R}$ such as analogs of unimodality, symmetry, Pascal's triangle, etc. for classical binomial coefficients. The asymptotic behavior of such generalized binomial coefficients of a special form is established.
Keywords: factorial, gamma function
Mots-clés : binomial coefficient, real binomial coefficient.
@article{SEMR_2023_20_1_a22,
     author = {T. I. Fedoryaeva},
     title = {On {Binomial} coefficients of real arguments},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {514--523},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a22/}
}
TY  - JOUR
AU  - T. I. Fedoryaeva
TI  - On Binomial coefficients of real arguments
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 514
EP  - 523
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a22/
LA  - en
ID  - SEMR_2023_20_1_a22
ER  - 
%0 Journal Article
%A T. I. Fedoryaeva
%T On Binomial coefficients of real arguments
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 514-523
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a22/
%G en
%F SEMR_2023_20_1_a22
T. I. Fedoryaeva. On Binomial coefficients of real arguments. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 514-523. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a22/