On Binomial coefficients of real arguments
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 514-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well-known, a generalization of the classical concept of the factorial $n!$ for a real number $x\in {\mathbb R}$ is the value of Euler's gamma function $\Gamma(1+x)$. In this connection, the notion of a binomial coefficient naturally arose for admissible values of the real arguments. We prove by elementary means a number of properties of binomial coefficients $\binom{r}{\alpha}$ of real arguments $r, \alpha\in {\mathbb R}$ such as analogs of unimodality, symmetry, Pascal's triangle, etc. for classical binomial coefficients. The asymptotic behavior of such generalized binomial coefficients of a special form is established.
Keywords: factorial, gamma function
Mots-clés : binomial coefficient, real binomial coefficient.
@article{SEMR_2023_20_1_a22,
     author = {T. I. Fedoryaeva},
     title = {On {Binomial} coefficients of real arguments},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {514--523},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a22/}
}
TY  - JOUR
AU  - T. I. Fedoryaeva
TI  - On Binomial coefficients of real arguments
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 514
EP  - 523
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a22/
LA  - en
ID  - SEMR_2023_20_1_a22
ER  - 
%0 Journal Article
%A T. I. Fedoryaeva
%T On Binomial coefficients of real arguments
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 514-523
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a22/
%G en
%F SEMR_2023_20_1_a22
T. I. Fedoryaeva. On Binomial coefficients of real arguments. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 514-523. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a22/

[1] M. Abramowitz (ed), I.A. Stegun (ed), Handbook of mathematical functions with formulas, graphs, and mathematical tables, John Wiley Sons, New York etc, 1972 | MR | Zbl

[2] T.I. Fedoryaeva, “Logarithmic asymptotic of the number of central vertices of almost all $n$-vertex graphs of diameter $k$”, Sib. Èlectron. Mat. Izv., 19:2 (2022), 747–761 | MR

[3] G.M. Fikhtengol'ts, Course of Differential and Integral Calculus, v. 2, Fizmatlit, M., 2003; 1965 | Zbl

[4] D. Fowler, “The binomial coefficient function”, Am. Math. Mon., 103:1 (1996), 1–17 | DOI | MR | Zbl

[5] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete mathematics: a foundation for computer science, Addison-Wesley, Amsterdam, 1994 | MR | Zbl

[6] J.L.W.V. Jensen and T.H. Gronwall, “An elementary exposition of the theory of the Gamma function”, Annals of Math. (2), 17:3 (1916), 124–166 | DOI | MR | Zbl

[7] St.T. Smith, “The binomial coefficient $\binom{n}{x}$ for arbitrary $x$”, Online J. Anal. Comb., 15 (2020), 7 | MR | Zbl