The volume of a trirectangular hyperbolic tetrahedron
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 275-284

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a three-parameter family of tetrahedra in the hyperbolic space, which three edges at one vertex are pairwise orthogonal. It is convenient to determine such tetrahedra by the lengths of these edges. We obtain relatively simple formulas for them expressing the volume and the surface area. This allows us to find normalized volume and investigate its asymptotics.
Keywords: hyperbolic volume, normalized volume, Poincaré upper half-space model, hyperbolic tetrahedron, infinite cone.
Mots-clés : trirectangular tetrahedron
@article{SEMR_2023_20_1_a20,
     author = {N. Abrosimov and S. Stepanishchev},
     title = {The volume of a trirectangular hyperbolic tetrahedron},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {275--284},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a20/}
}
TY  - JOUR
AU  - N. Abrosimov
AU  - S. Stepanishchev
TI  - The volume of a trirectangular hyperbolic tetrahedron
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 275
EP  - 284
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a20/
LA  - en
ID  - SEMR_2023_20_1_a20
ER  - 
%0 Journal Article
%A N. Abrosimov
%A S. Stepanishchev
%T The volume of a trirectangular hyperbolic tetrahedron
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 275-284
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a20/
%G en
%F SEMR_2023_20_1_a20
N. Abrosimov; S. Stepanishchev. The volume of a trirectangular hyperbolic tetrahedron. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 275-284. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a20/