Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_1_a20, author = {N. Abrosimov and S. Stepanishchev}, title = {The volume of a trirectangular hyperbolic tetrahedron}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {275--284}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a20/} }
TY - JOUR AU - N. Abrosimov AU - S. Stepanishchev TI - The volume of a trirectangular hyperbolic tetrahedron JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 275 EP - 284 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a20/ LA - en ID - SEMR_2023_20_1_a20 ER -
N. Abrosimov; S. Stepanishchev. The volume of a trirectangular hyperbolic tetrahedron. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 275-284. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a20/
[1] N.V. Abrosimov, G.A. Baigonakova, “Hyperbolic octahedron with $mmm$-symmetry”, Sib. Èlectron. Mat. Izv., 10 (2013), 123–140 | MR | Zbl
[2] N.V. Abrosimov, A.D. Mednykh, “Area and volume in non-Euclidean geometry”, Eighteen essays in non-Euclidean geometry, IRMA Lect. Math. Theor. Phys., 29, eds. Alberge Vincent et al., Eur. Math. Soc., Zürich, 2019, 151–189 | DOI | MR | Zbl | Zbl
[3] N.V. Abrosimov, A.D. Mednykh, “Volumes of polytopes in spaces of constant curvature”, Rigidity and symmetry, Fields Inst. Commun., 70, eds. Connelly Robert et al., Springer, New York, 2014, 1–26 | DOI | MR | Zbl
[4] N.V. Abrosimov, B. Vuong, “Explicit volume formula for a hyperbolic tetrahedron in terms of edge lengths”, J. Knot Theory Ramifications, 30:10 (2021), 2140007 | DOI | MR | Zbl
[5] D.V. Alekseevskii, E.B. Vinberg, A.S. Solodovnikov, “Geometry of spaces of constant curvature”, Geometry, v. II, Encycl. Math. Sci., 29, Spaces of constant curvature, Springer, Berlin, 1993, 1–138 | MR | Zbl
[6] G.A. Baigonakova, Calculation of volumes of polyhedra in non-Euclidean geometry, PhD thesis, Gorno-Altaisk, 2012
[7] S. Bilinski, “Zur Begründung der elementaren Inhaltslehre in der hyperbolischen Ebene”, Math. Ann., 180 (1969), 256–268 | DOI | MR | Zbl
[8] Yu. Cho, H. Kim, “On the volume formula for hyperbolic tetrahedra”, Discrete Comput. Geom., 22:3 (1999), 347–366 | DOI | MR | Zbl
[9] D.A. Derevnin, A.D. Mednykh, “A formula for the volume of hyperbolic tetrahedron”, Russ. Math. Surv., 60:2 (2005), 346–348 | DOI | MR | Zbl
[10] W. Fenchel, Elementary geometry in hyperbolic space, Walter de Gruyter, Berlin etc, 1989 | MR | Zbl
[11] F. Lannér, “On complexes with transitive groups of automorphisms”, Meddel. Lunds Univ. Mat. Semin., 11 (1950) | MR | Zbl
[12] N.I. Lobatschefskij (N.I. Lobachevsky), Imaginäre Geometrie und ihre Anwendung auf einige Integrale, German translation by H. Liebmann, Teubner, Leipzig, 1904
[13] B. McConnell, The laws of cosines for non-Euclidean tetrahedra, 2022 http://daylateanddollarshort.com/mathdocs/The-Laws-of-Cosines-for-Non-Euclidean-Tetrahedra.pdf
[14] J. Murakami, M. Yano, “On the volume of a hyperbolic and spherical tetrahedron”, Comm. Anal. Geom., 13:2 (2005), 379–400 | DOI | MR | Zbl
[15] O. Nemoul, N. Mebarki, Volume and boundary face area of a regular tetrahedron in a constant curvature space, 2018, arXiv: 1803.10809 [physics.gen-ph]
[16] G. Sforza, “Ricerche di estensionimetria negli spazi metrico-proiettivi”, Modena Mem. (3), 8 (1907), 21–66 (Appendice) | Zbl
[17] P. Stäckel, Geometrische Untersuchungen von Wolfgang Bolyai und Johann Bolyai, v. I.-II, B.G. Teubner, Leipzig, 1913 | Zbl
[18] A. Ushijima, “A volume formula for generalized hyperbolic tetrahedra”, Non-Euclidean Geometries, Mathematics and Its Applications, 581, eds. Prékopa András et al., Springer, New York, 2006, 249–265 | DOI | MR | Zbl