The volume of a trirectangular hyperbolic tetrahedron
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 275-284
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a three-parameter family of tetrahedra in the hyperbolic space, which three edges at one vertex are pairwise orthogonal. It is convenient to determine such tetrahedra by the lengths of these edges. We obtain relatively simple formulas for them expressing the volume and the surface area. This allows us to find normalized volume and investigate its asymptotics.
Keywords:
hyperbolic volume, normalized volume, Poincaré upper half-space model, hyperbolic tetrahedron, infinite cone.
Mots-clés : trirectangular tetrahedron
Mots-clés : trirectangular tetrahedron
@article{SEMR_2023_20_1_a20,
author = {N. Abrosimov and S. Stepanishchev},
title = {The volume of a trirectangular hyperbolic tetrahedron},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {275--284},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a20/}
}
TY - JOUR AU - N. Abrosimov AU - S. Stepanishchev TI - The volume of a trirectangular hyperbolic tetrahedron JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 275 EP - 284 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a20/ LA - en ID - SEMR_2023_20_1_a20 ER -
N. Abrosimov; S. Stepanishchev. The volume of a trirectangular hyperbolic tetrahedron. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 275-284. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a20/