Hopf-type theorems for $f$-neighbors
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 165-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

We work within the framework of a program aimed at exploring various extended versions for theorems from a class containing Borsuk–Ulam type theorems, some fixed point theorems, the KKM lemma, Radon, Tverberg, and Helly theorems. In this paper we study variations of the Hopf theorem concerning continuous maps of a compact Riemannian manifold $M$ of dimension $n$ to $\mathbb{R}^n$. First, we generalize the Hopf theorem in a quantitative sense. Then we investigate the case of maps $f\colon M \to \mathbb{R}^m$ with $n m$ and introduce several notions of varied types of $f$-neighbors, which is a pair of distinct points in $M$ such that $f$ takes it to a ‘small’ set of some type. Next for each type, we ask what distances on $M$ are realized as distances between $f$-neighbors of this type and study various characteristics of this set of distances. One of our main results is as follows. Let $f\colon M \to \mathbb{R}^{m}$ be a continuous map. We say that two distinct points $a$ and $b$ in $M$ are visual $f$-neighbors if the segment in $\mathbb{R}^{m}$ with endpoints $f(a)$ and $f(b)$ intersects $f(M)$ only at $f(a)$ and $f(b)$. Then the set of distances that are realized as distances between visual $f$-neighbors is infinite.
Keywords: Borsuk–Ulam type theorems, the Hopf theorem, winding number, locally injective.
@article{SEMR_2023_20_1_a19,
     author = {A. V. Malyutin and I. M. Shirokov},
     title = {Hopf-type theorems for $f$-neighbors},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {165--182},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a19/}
}
TY  - JOUR
AU  - A. V. Malyutin
AU  - I. M. Shirokov
TI  - Hopf-type theorems for $f$-neighbors
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 165
EP  - 182
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a19/
LA  - en
ID  - SEMR_2023_20_1_a19
ER  - 
%0 Journal Article
%A A. V. Malyutin
%A I. M. Shirokov
%T Hopf-type theorems for $f$-neighbors
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 165-182
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a19/
%G en
%F SEMR_2023_20_1_a19
A. V. Malyutin; I. M. Shirokov. Hopf-type theorems for $f$-neighbors. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 1, pp. 165-182. http://geodesic.mathdoc.fr/item/SEMR_2023_20_1_a19/

[1] D. Attali, J-D. Boissonnat, H. Edelsbrunner, “Stability and computation of medial axes: a state-of-the-art report”, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, eds. Möller Torsten et al., Springer, Berlin, 2009, 109–125 | DOI | MR | Zbl

[2] H. Hopf, “Eine Verallgemeinerung bekannter Abbildungs- und Überdeckungssätze”, Port. Math., 4 (1944), 129–139 | MR | Zbl

[3] A. Lieutier, “Any open bounded subset of $\mathrm{R}^n$ has the same homotopy type as its medial axis”, Computer-Aided Design, 36:11 (2004), 1029–1046 | DOI

[4] A.V. Malyutin, O.R. Musin, Neighboring mapping points theorem, 2022, 21 pp., arXiv: 1812.10895 | MR

[5] G. Matheron, “Examples of topological properties of skeletons”, Image Analysis and Mathematical Morphology, v. 2, Theoretical Advances, ed. J. Serra, Academic Press, London, 1988, 217–238 | MR

[6] W. Thurston, A comment on (Accessed August 15, 2022) https://mathoverflow.net/questions/57766/why-are-there-no-wild-arcs-in-the-plane

[7] G.T. Whyburn, “On locally simple curves”, Bull. Amer. Math. Soc., 53 (1947), 986–992 | DOI | MR | Zbl